""" Unit tests for the icons embeddings module. """ import importlib import sys from pathlib import Path from types import SimpleNamespace from typing import Any import numpy as np def _reload_module_with_dummies(monkeypatch: Any, emb_dim: int = 4): """ Reload the icons_embeddings module after monkeypatching the Transformers constructors to return lightweight dummy objects. This prevents network/download or heavy model initialization during tests and allows deterministic embeddings. Args: monkeypatch: The pytest monkeypatch fixture. emb_dim: The embedding dimensionality that the dummy model should produce. Returns: The reloaded module object. """ class DummyTokenizer: def __call__(self, texts, return_tensors=None, padding=None, max_length=None, truncation=None): if isinstance(texts, str): texts_list = [texts] else: texts_list = list(texts) return {'texts': texts_list} class DummyTensor: def __init__(self, arr: np.ndarray) -> None: self.arr = arr def mean(self, dim: int) -> 'DummyTensor': # Take numpy mean along the requested axis to emulate PyTorch. return DummyTensor(self.arr.mean(axis=dim)) def detach(self) -> 'DummyTensor': return self def numpy(self) -> np.ndarray: return self.arr class DummyModel: def __call__(self, **inputs: Any) -> SimpleNamespace: texts = inputs.get('texts', []) n = len(texts) seq_len = 3 arr = np.arange(n * seq_len * emb_dim, dtype=float) arr = arr.reshape((n, seq_len, emb_dim)) return SimpleNamespace(last_hidden_state=DummyTensor(arr)) monkeypatch.setattr( 'transformers.BertTokenizer.from_pretrained', lambda name: DummyTokenizer(), ) monkeypatch.setattr( 'transformers.BertModel.from_pretrained', lambda name: DummyModel(), ) if 'slidedeckai.helpers.icons_embeddings' in sys.modules: mod = importlib.reload(sys.modules['slidedeckai.helpers.icons_embeddings']) else: mod = importlib.import_module('slidedeckai.helpers.icons_embeddings') return mod def test_get_icons_list(tmp_path: Path, monkeypatch: Any) -> None: """ get_icons_list should return the stems of PNG files in the configured icons directory. """ mod = _reload_module_with_dummies(monkeypatch) # Prepare a temporary icons directory with some files. icons_dir = tmp_path / 'icons' icons_dir.mkdir() (icons_dir / 'apple.png').write_text('x') (icons_dir / 'banana.png').write_text('y') (icons_dir / 'not_an_icon.txt').write_text('z') monkeypatch.setattr(mod.GlobalConfig, 'ICONS_DIR', icons_dir) icons = mod.get_icons_list() assert set(icons) == {'apple', 'banana'} def test_get_embeddings_single_and_list(monkeypatch: Any) -> None: """ get_embeddings must return numpy arrays with the expected shapes for single string and list inputs. """ emb_dim = 5 mod = _reload_module_with_dummies(monkeypatch, emb_dim=emb_dim) # Single string -> shape (1, emb_dim) arr1 = mod.get_embeddings('hello') assert isinstance(arr1, np.ndarray) assert arr1.shape == (1, emb_dim) # List of strings -> shape (3, emb_dim) arr2 = mod.get_embeddings(['a', 'b', 'c']) assert arr2.shape == (3, emb_dim) # Verify determinism from our dummy model for the first row. # The dummy model fills values with a range; mean over axis=1 reduces # the seq_len dimension. expected_first_row = np.arange(3 * emb_dim).reshape((3, emb_dim)).mean(axis=0) assert np.allclose(arr2[0], expected_first_row) def test_save_and_load_embeddings(tmp_path: Path, monkeypatch: Any) -> None: """ save_icons_embeddings should write embeddings and file names to the configured paths and load_saved_embeddings should read them back. """ emb_dim = 6 mod = _reload_module_with_dummies(monkeypatch, emb_dim=emb_dim) # Create icons dir with files. icons_dir = tmp_path / 'icons2' icons_dir.mkdir() (icons_dir / 'one.png').write_text('1') (icons_dir / 'two.png').write_text('2') monkeypatch.setattr(mod.GlobalConfig, 'ICONS_DIR', icons_dir) emb_file = tmp_path / 'emb.npy' names_file = tmp_path / 'names.npy' monkeypatch.setattr(mod.GlobalConfig, 'EMBEDDINGS_FILE_NAME', str(emb_file)) monkeypatch.setattr(mod.GlobalConfig, 'ICONS_FILE_NAME', str(names_file)) # Run save which uses the dummy tokenizer/model to create embeddings. mod.save_icons_embeddings() assert emb_file.exists() assert names_file.exists() loaded_emb, loaded_names = mod.load_saved_embeddings() assert isinstance(loaded_emb, np.ndarray) assert isinstance(loaded_names, np.ndarray) assert loaded_emb.shape[0] == len(loaded_names) def test_find_icons(monkeypatch: Any, tmp_path: Path) -> None: """ find_icons should map keywords to the most similar icon filenames based on cosine similarity against pre-saved embeddings. """ # Reload module with dummy model but we will monkeypatch get_embeddings # to control keyword embeddings precisely. mod = _reload_module_with_dummies(monkeypatch, emb_dim=3) # Prepare saved embeddings with two icons. emb = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) names = np.array(['a_icon', 'b_icon']) emb_file = tmp_path / 'emb_s.npy' names_file = tmp_path / 'names_s.npy' np.save(str(emb_file), emb) np.save(str(names_file), names) monkeypatch.setattr(mod.GlobalConfig, 'EMBEDDINGS_FILE_NAME', str(emb_file)) monkeypatch.setattr(mod.GlobalConfig, 'ICONS_FILE_NAME', str(names_file)) # Make keyword embeddings match each saved one. def fake_get_embeddings(keywords: list[str]) -> np.ndarray: out = [] for kw in keywords: if kw == 'match_a': out.append([1.0, 0.0, 0.0]) else: out.append([0.0, 1.0, 0.0]) return np.array(out) monkeypatch.setattr(mod, 'get_embeddings', fake_get_embeddings) res = mod.find_icons(['match_a', 'other']) assert list(res) == ['a_icon', 'b_icon'] def test_main_calls_and_prints(monkeypatch: Any, capsys: Any) -> None: """ main should call save_icons_embeddings and find_icons and print the zipped results. We monkeypatch the heavy functions to keep it fast. """ mod = _reload_module_with_dummies(monkeypatch) called = {} def fake_save(): called['saved'] = True def fake_find(keywords: list[str]) -> list[str]: called['found'] = True return ['x' for _ in keywords] monkeypatch.setattr(mod, 'save_icons_embeddings', fake_save) monkeypatch.setattr(mod, 'find_icons', fake_find) mod.main() captured = capsys.readouterr() assert 'The relevant icon files are' in captured.out assert called.get('saved') is True assert called.get('found') is True