Spaces:
Running
Running
| """ | |
| Streamlit app containing the UI and the application logic. | |
| """ | |
| import datetime | |
| import logging | |
| import os | |
| import pathlib | |
| import random | |
| import sys | |
| import httpx | |
| import json5 | |
| import ollama | |
| import requests | |
| import streamlit as st | |
| from dotenv import load_dotenv | |
| sys.path.insert(0, os.path.abspath('src')) | |
| from slidedeckai.core import SlideDeckAI | |
| from slidedeckai import global_config as gcfg | |
| from slidedeckai.global_config import GlobalConfig | |
| from slidedeckai.helpers import llm_helper, text_helper | |
| import slidedeckai.helpers.file_manager as filem | |
| from slidedeckai.helpers.chat_helper import ChatMessage, HumanMessage, AIMessage | |
| from slidedeckai.helpers import chat_helper | |
| load_dotenv() | |
| logger = logging.getLogger(__name__) | |
| RUN_IN_OFFLINE_MODE = os.getenv('RUN_IN_OFFLINE_MODE', 'False').lower() == 'true' | |
| # Session variables | |
| SLIDE_GENERATOR = 'slide_generator_instance' | |
| CHAT_MESSAGES = 'chat_messages' | |
| DOWNLOAD_FILE_KEY = 'download_file_name' | |
| IS_IT_REFINEMENT = 'is_it_refinement' | |
| ADDITIONAL_INFO = 'additional_info' | |
| PDF_FILE_KEY = 'pdf_file' | |
| API_INPUT_KEY = 'api_key_input' | |
| TEXTS = list(GlobalConfig.PPTX_TEMPLATE_FILES.keys()) | |
| CAPTIONS = [GlobalConfig.PPTX_TEMPLATE_FILES[x]['caption'] for x in TEXTS] | |
| class StreamlitChatMessageHistory: | |
| """Chat message history stored in Streamlit session state.""" | |
| def __init__(self, key: str): | |
| """Initialize the chat message history.""" | |
| self.key = key | |
| if key not in st.session_state: | |
| st.session_state[key] = [] | |
| def messages(self): | |
| """Get all chat messages in the history.""" | |
| return st.session_state[self.key] | |
| def add_user_message(self, content: str): | |
| """Add a user message to the history.""" | |
| st.session_state[self.key].append(HumanMessage(content)) | |
| def add_ai_message(self, content: str): | |
| """Add an AI message to the history.""" | |
| st.session_state[self.key].append(AIMessage(content)) | |
| def _load_strings() -> dict: | |
| """ | |
| Load various strings to be displayed in the app. | |
| Returns: | |
| The dictionary of strings. | |
| """ | |
| with open(GlobalConfig.APP_STRINGS_FILE, 'r', encoding='utf-8') as in_file: | |
| return json5.loads(in_file.read()) | |
| def _get_prompt_template(is_refinement: bool) -> str: | |
| """ | |
| Return a prompt template. | |
| Args: | |
| is_refinement: Whether this is the initial or refinement prompt. | |
| Returns: | |
| The prompt template as f-string. | |
| """ | |
| if is_refinement: | |
| with open(GlobalConfig.REFINEMENT_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file: | |
| template = in_file.read() | |
| else: | |
| with open(GlobalConfig.INITIAL_PROMPT_TEMPLATE, 'r', encoding='utf-8') as in_file: | |
| template = in_file.read() | |
| return template | |
| def are_all_inputs_valid( | |
| user_prompt: str, | |
| provider: str, | |
| selected_model: str, | |
| user_key: str, | |
| azure_deployment_url: str = '', | |
| azure_endpoint_name: str = '', | |
| azure_api_version: str = '', | |
| ) -> bool: | |
| """ | |
| Validate user input and LLM selection. | |
| Args: | |
| user_prompt: The prompt. | |
| provider: The LLM provider. | |
| selected_model: Name of the model. | |
| user_key: User-provided API key. | |
| azure_deployment_url: Azure OpenAI deployment URL. | |
| azure_endpoint_name: Azure OpenAI model endpoint. | |
| azure_api_version: Azure OpenAI API version. | |
| Returns: | |
| `True` if all inputs "look" OK; `False` otherwise. | |
| """ | |
| if not text_helper.is_valid_prompt(user_prompt): | |
| handle_error( | |
| 'Not enough information provided!' | |
| ' Please be a little more descriptive and type a few words' | |
| ' with a few characters :)', | |
| False | |
| ) | |
| return False | |
| if not provider or not selected_model: | |
| handle_error('No valid LLM provider and/or model name found!', False) | |
| return False | |
| if not llm_helper.is_valid_llm_provider_model( | |
| provider, selected_model, user_key, | |
| azure_endpoint_name, azure_deployment_url, azure_api_version | |
| ): | |
| handle_error( | |
| 'The LLM settings do not look correct. Make sure that an API key/access token' | |
| ' is provided if the selected LLM requires it. An API key should be 6-200 characters' | |
| ' long, only containing alphanumeric characters, hyphens, and underscores.\n\n' | |
| 'If you are using Azure OpenAI, make sure that you have provided the additional and' | |
| ' correct configurations.', | |
| False | |
| ) | |
| return False | |
| return True | |
| def handle_error(error_msg: str, should_log: bool): | |
| """ | |
| Display an error message in the app. | |
| Args: | |
| error_msg: The error message to be displayed. | |
| should_log: If `True`, log the message. | |
| """ | |
| if should_log: | |
| logger.error(error_msg) | |
| st.error(error_msg) | |
| def reset_api_key(): | |
| """ | |
| Clear API key input when a different LLM is selected from the dropdown list. | |
| """ | |
| st.session_state.api_key_input = '' | |
| def reset_chat_history(): | |
| """ | |
| Clear the chat history and related session state variables. | |
| """ | |
| # Clear session state variables using pop with None default | |
| st.session_state.pop(SLIDE_GENERATOR, None) | |
| st.session_state.pop(CHAT_MESSAGES, None) | |
| st.session_state.pop(IS_IT_REFINEMENT, None) | |
| st.session_state.pop(ADDITIONAL_INFO, None) | |
| st.session_state.pop(PDF_FILE_KEY, None) | |
| # Remove previously generated temp PPTX file | |
| temp_pptx_path = st.session_state.pop(DOWNLOAD_FILE_KEY, None) | |
| if temp_pptx_path: | |
| pptx_path = pathlib.Path(temp_pptx_path) | |
| if pptx_path.exists() and pptx_path.is_file(): | |
| pptx_path.unlink() | |
| APP_TEXT = _load_strings() | |
| # -----= UI display begins here =----- | |
| with st.sidebar: | |
| # New Chat button at the top of sidebar | |
| col1, col2, col3 = st.columns([.17, 0.8, .1]) | |
| with col2: | |
| if st.button('New Chat 💬', help='Start a new conversation', key='new_chat_button'): | |
| reset_chat_history() # Reset the chat history when the button is clicked | |
| # The PPT templates | |
| pptx_template = st.sidebar.radio( | |
| '1: Select a presentation template:', | |
| TEXTS, | |
| captions=CAPTIONS, | |
| horizontal=True | |
| ) | |
| if RUN_IN_OFFLINE_MODE: | |
| llm_provider_to_use = st.text_input( | |
| label='2: Enter Ollama model name to use (e.g., gemma3:1b):', | |
| help=( | |
| 'Specify a correct, locally available LLM, found by running `ollama list`, for' | |
| ' example, `gemma3:1b`, `mistral:v0.2`, and `mistral-nemo:latest`. Having an' | |
| ' Ollama-compatible and supported GPU is strongly recommended.' | |
| ) | |
| ) | |
| # If a SlideDeckAI instance already exists in session state, update its model | |
| # to reflect the user change rather than reusing the old model | |
| # No API key required for local models | |
| if SLIDE_GENERATOR in st.session_state and llm_provider_to_use: | |
| try: | |
| st.session_state[SLIDE_GENERATOR].set_model(llm_provider_to_use) | |
| except Exception as e: | |
| logger.error('Failed to update model on existing SlideDeckAI: %s', e) | |
| # If updating fails, drop the stored instance so a new one is created | |
| st.session_state.pop(SLIDE_GENERATOR, None) | |
| api_key_token: str = '' | |
| azure_endpoint: str = '' | |
| azure_deployment: str = '' | |
| api_version: str = '' | |
| else: | |
| # The online LLMs | |
| llm_provider_to_use = st.sidebar.selectbox( | |
| label='2: Select a suitable LLM to use:\n\n(Gemini and Mistral-Nemo are recommended)', | |
| options=[f'{k} ({v["description"]})' for k, v in GlobalConfig.VALID_MODELS.items()], | |
| index=GlobalConfig.DEFAULT_MODEL_INDEX, | |
| help=GlobalConfig.LLM_PROVIDER_HELP, | |
| on_change=reset_api_key | |
| ).split(' ')[0] | |
| # --- Automatically fetch API key from .env if available --- | |
| # Extract provider key using regex | |
| provider_match = GlobalConfig.PROVIDER_REGEX.match(llm_provider_to_use) | |
| if provider_match: | |
| selected_provider = provider_match.group(1) | |
| else: | |
| # If regex doesn't match, try to extract provider from the beginning | |
| selected_provider = ( | |
| llm_provider_to_use.split(' ')[0] | |
| if ' ' in llm_provider_to_use else llm_provider_to_use | |
| ) | |
| logger.warning( | |
| 'Provider regex did not match for: %s, using: %s', | |
| llm_provider_to_use, selected_provider | |
| ) | |
| # Validate that the selected provider is valid | |
| if selected_provider not in GlobalConfig.VALID_PROVIDERS: | |
| logger.error('Invalid provider: %s', selected_provider) | |
| handle_error(f'Invalid provider selected: {selected_provider}', True) | |
| st.stop() | |
| env_key_name = GlobalConfig.PROVIDER_ENV_KEYS.get(selected_provider) | |
| default_api_key = os.getenv(env_key_name, '') if env_key_name else '' | |
| # Always sync session state to env value if needed (autofill on provider change) | |
| if default_api_key and st.session_state.get(API_INPUT_KEY, None) != default_api_key: | |
| st.session_state[API_INPUT_KEY] = default_api_key | |
| api_key_token = st.text_input( | |
| label=( | |
| '3: Paste your API key/access token:\n\n' | |
| '*Mandatory* for all providers.' | |
| ), | |
| key=API_INPUT_KEY, | |
| type='password', | |
| disabled=bool(default_api_key), | |
| ) | |
| # If a model was updated in the sidebar, make sure to update it in the SlideDeckAI instance | |
| if SLIDE_GENERATOR in st.session_state and llm_provider_to_use: | |
| try: | |
| st.session_state[SLIDE_GENERATOR].set_model(llm_provider_to_use, api_key_token) | |
| except Exception as e: | |
| logger.error('Failed to update model on existing SlideDeckAI: %s', e) | |
| # If updating fails, drop the stored instance so a new one is created | |
| st.session_state.pop(SLIDE_GENERATOR, None) | |
| # Additional configs for Azure OpenAI | |
| with st.expander('**Azure OpenAI-specific configurations**'): | |
| azure_endpoint = st.text_input( | |
| label=( | |
| '4: Azure endpoint URL, e.g., https://example.openai.azure.com/.\n\n' | |
| '*Mandatory* for Azure OpenAI (only).' | |
| ) | |
| ) | |
| azure_deployment = st.text_input( | |
| label=( | |
| '5: Deployment name on Azure OpenAI:\n\n' | |
| '*Mandatory* for Azure OpenAI (only).' | |
| ), | |
| ) | |
| api_version = st.text_input( | |
| label=( | |
| '6: API version:\n\n' | |
| '*Mandatory* field. Change based on your deployment configurations.' | |
| ), | |
| value='2024-05-01-preview', | |
| ) | |
| # Make slider with initial values | |
| page_range_slider = st.slider( | |
| 'Specify a page range for the uploaded PDF file (if any):', | |
| 1, GlobalConfig.MAX_ALLOWED_PAGES, | |
| [1, GlobalConfig.MAX_ALLOWED_PAGES] | |
| ) | |
| st.session_state['page_range_slider'] = page_range_slider | |
| def build_ui(): | |
| """ | |
| Display the input elements for content generation. | |
| """ | |
| st.title(APP_TEXT['app_name']) | |
| st.subheader(APP_TEXT['caption']) | |
| st.markdown( | |
| '' # noqa: E501 | |
| ) | |
| today = datetime.date.today() | |
| if today.month == 1 and 1 <= today.day <= 15: | |
| st.success( | |
| ( | |
| 'Wishing you a happy and successful New Year!' | |
| ' It is your appreciation that keeps SlideDeck AI going.' | |
| f' May you make some great slide decks in {today.year} ✨' | |
| ), | |
| icon='🎆' | |
| ) | |
| with st.expander('Usage Policies and Limitations'): | |
| st.text(APP_TEXT['tos'] + '\n\n' + APP_TEXT['tos2']) | |
| set_up_chat_ui() | |
| def set_up_chat_ui(): | |
| """ | |
| Prepare the chat interface and related functionality. | |
| """ | |
| # Set start and end page | |
| st.session_state['start_page'] = st.session_state['page_range_slider'][0] | |
| st.session_state['end_page'] = st.session_state['page_range_slider'][1] | |
| with st.expander('Usage Instructions'): | |
| st.markdown(GlobalConfig.CHAT_USAGE_INSTRUCTIONS) | |
| st.info(APP_TEXT['like_feedback']) | |
| st.chat_message('ai').write(random.choice(APP_TEXT['ai_greetings'])) | |
| history = StreamlitChatMessageHistory(key=CHAT_MESSAGES) | |
| # Since Streamlit app reloads at every interaction, display the chat history | |
| # from the save session state | |
| for msg in history.messages: | |
| st.chat_message(msg.type).code(msg.content, language='json') | |
| # Chat input at the bottom | |
| prompt = st.chat_input( | |
| placeholder=APP_TEXT['chat_placeholder'], | |
| max_chars=GlobalConfig.LLM_MODEL_MAX_INPUT_LENGTH, | |
| accept_file=True, | |
| file_type=['pdf', ], | |
| ) | |
| if prompt: | |
| prompt_text = prompt.text or '' | |
| if prompt['files']: | |
| # Store uploaded pdf in session state | |
| uploaded_pdf = prompt['files'][0] | |
| st.session_state[PDF_FILE_KEY] = uploaded_pdf | |
| # Apparently, Streamlit stores uploaded files in memory and clears on browser close | |
| # https://docs.streamlit.io/knowledge-base/using-streamlit/where-file-uploader-store-when-deleted | |
| # Check if pdf file is uploaded | |
| # (we can use the same file if the user doesn't upload a new one) | |
| if PDF_FILE_KEY in st.session_state: | |
| # Get validated page range | |
| ( | |
| st.session_state['start_page'], | |
| st.session_state['end_page'] | |
| ) = filem.validate_page_range( | |
| st.session_state[PDF_FILE_KEY], | |
| st.session_state['start_page'], | |
| st.session_state['end_page'] | |
| ) | |
| # Show sidebar text for page selection and file name | |
| with st.sidebar: | |
| if st.session_state['end_page'] is None: # If the PDF has only one page | |
| st.text( | |
| f'Extracting page {st.session_state["start_page"]} in' | |
| f' {st.session_state["pdf_file"].name}' | |
| ) | |
| else: | |
| st.text( | |
| f'Extracting pages {st.session_state["start_page"]} to' | |
| f' {st.session_state["end_page"]} in {st.session_state["pdf_file"].name}' | |
| ) | |
| st.chat_message('user').write(prompt_text) | |
| if SLIDE_GENERATOR in st.session_state: | |
| slide_generator = st.session_state[SLIDE_GENERATOR] | |
| else: | |
| slide_generator = SlideDeckAI( | |
| model=llm_provider_to_use, | |
| topic=prompt_text, | |
| api_key=api_key_token.strip(), | |
| template_idx=list(GlobalConfig.PPTX_TEMPLATE_FILES.keys()).index(pptx_template), | |
| pdf_path_or_stream=st.session_state.get(PDF_FILE_KEY), | |
| pdf_page_range=( | |
| st.session_state.get('start_page'), st.session_state.get('end_page') | |
| ), | |
| ) | |
| st.session_state[SLIDE_GENERATOR] = slide_generator | |
| progress_bar = st.progress(0, 'Preparing to call LLM...') | |
| def progress_callback(current_progress): | |
| progress_bar.progress( | |
| min(current_progress / gcfg.get_max_output_tokens(llm_provider_to_use), 0.95), | |
| text='Streaming content...this might take a while...' | |
| ) | |
| try: | |
| if _is_it_refinement(): | |
| path = slide_generator.revise( | |
| instructions=prompt_text, progress_callback=progress_callback | |
| ) | |
| else: | |
| path = slide_generator.generate(progress_callback=progress_callback) | |
| progress_bar.progress(1.0, text='Done!') | |
| if path: | |
| st.session_state[DOWNLOAD_FILE_KEY] = str(path) | |
| history.add_user_message(prompt_text) | |
| history.add_ai_message(slide_generator.last_response) | |
| st.chat_message('ai').code(slide_generator.last_response, language='json') | |
| _display_download_button(path) | |
| else: | |
| handle_error('Failed to generate slide deck.', True) | |
| except (httpx.ConnectError, requests.exceptions.ConnectionError): | |
| handle_error( | |
| 'A connection error occurred while streaming content from the LLM endpoint.' | |
| ' Unfortunately, the slide deck cannot be generated. Please try again later.' | |
| ' Alternatively, try selecting a different LLM from the dropdown list. If you are' | |
| ' using Ollama, make sure that Ollama is already running on your system.', | |
| True | |
| ) | |
| except ollama.ResponseError: | |
| handle_error( | |
| 'The model is unavailable with Ollama on your system.' | |
| ' Make sure that you have provided the correct LLM name or pull it.' | |
| ' View LLMs available locally by running `ollama list`.', | |
| True | |
| ) | |
| except Exception as ex: | |
| _msg = str(ex) | |
| if 'payment required' in _msg.lower(): | |
| handle_error( | |
| 'The available inference quota has exhausted.' | |
| ' Please use your own Hugging Face access token. Paste your token in' | |
| ' the input field on the sidebar to the left.' | |
| '\n\nDon\'t have a token? Get your free' | |
| ' [HF access token](https://huggingface.co/settings/tokens) now' | |
| ' and start creating your slide deck! For gated models, you may need to' | |
| ' visit the model\'s page and accept the terms or service.' | |
| '\n\nAlternatively, choose a different LLM and provider from the list.', | |
| should_log=True | |
| ) | |
| else: | |
| handle_error( | |
| f'An unexpected error occurred while generating the content: {_msg}' | |
| '\n\nPlease try again later, possibly with different inputs.' | |
| ' Alternatively, try selecting a different LLM from the dropdown list.' | |
| ' If you are using Azure OpenAI, Cohere, Gemini, or Together AI models, make' | |
| ' sure that you have provided a correct API key.' | |
| ' Read **[how to get free LLM API keys](https://github.com/barun-saha/slide-deck-ai?tab=readme-ov-file#summary-of-the-llms)**.', | |
| True | |
| ) | |
| def _is_it_refinement() -> bool: | |
| """ | |
| Whether it is the initial prompt or a refinement. | |
| Returns: | |
| True if it is the initial prompt; False otherwise. | |
| """ | |
| if IS_IT_REFINEMENT in st.session_state: | |
| return True | |
| if len(st.session_state[CHAT_MESSAGES]) >= 2: | |
| # Prepare for the next call | |
| st.session_state[IS_IT_REFINEMENT] = True | |
| return True | |
| return False | |
| def _get_user_messages() -> list[str]: | |
| """ | |
| Get a list of user messages submitted until now from the session state. | |
| Returns: | |
| The list of user messages. | |
| """ | |
| return [ | |
| msg.content for msg in st.session_state[CHAT_MESSAGES] | |
| if isinstance(msg, chat_helper.HumanMessage) | |
| ] | |
| def _display_download_button(file_path: pathlib.Path): | |
| """ | |
| Display a download button to download a slide deck. | |
| Args: | |
| file_path: The path of the .pptx file. | |
| """ | |
| with open(file_path, 'rb') as download_file: | |
| st.download_button( | |
| 'Download PPTX file ⬇️', | |
| data=download_file, | |
| file_name='Presentation.pptx', | |
| key=datetime.datetime.now() | |
| ) | |
| if __name__ == '__main__': | |
| build_ui() | |