slide-deck-ai / helpers /llm_helper.py
sairampillai's picture
Fix review comments and formatting
54db4e6 unverified
raw
history blame
11 kB
"""
Helper functions to access LLMs using LiteLLM.
"""
import logging
import re
import sys
import urllib3
from typing import Tuple, Union, Iterator
import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
import os
sys.path.append('..')
from global_config import GlobalConfig
try:
import litellm
from litellm import completion, acompletion
except ImportError:
litellm = None
completion = None
acompletion = None
LLM_PROVIDER_MODEL_REGEX = re.compile(r'\[(.*?)\](.*)')
OLLAMA_MODEL_REGEX = re.compile(r'[a-zA-Z0-9._:-]+$')
# 94 characters long, only containing alphanumeric characters, hyphens, and underscores
API_KEY_REGEX = re.compile(r'^[a-zA-Z0-9_-]{6,94}$')
REQUEST_TIMEOUT = 35
OPENROUTER_BASE_URL = 'https://openrouter.ai/api/v1'
logger = logging.getLogger(__name__)
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
logging.getLogger('openai').setLevel(logging.ERROR)
retries = Retry(
total=5,
backoff_factor=0.25,
backoff_jitter=0.3,
status_forcelist=[502, 503, 504],
allowed_methods={'POST'},
)
adapter = HTTPAdapter(max_retries=retries)
http_session = requests.Session()
http_session.mount('https://', adapter)
http_session.mount('http://', adapter)
def get_provider_model(provider_model: str, use_ollama: bool) -> Tuple[str, str]:
"""
Parse and get LLM provider and model name from strings like `[provider]model/name-version`.
:param provider_model: The provider, model name string from `GlobalConfig`.
:param use_ollama: Whether Ollama is used (i.e., running in offline mode).
:return: The provider and the model name; empty strings in case no matching pattern found.
"""
provider_model = provider_model.strip()
if use_ollama:
match = OLLAMA_MODEL_REGEX.match(provider_model)
if match:
return GlobalConfig.PROVIDER_OLLAMA, match.group(0)
else:
match = LLM_PROVIDER_MODEL_REGEX.match(provider_model)
if match:
inside_brackets = match.group(1)
outside_brackets = match.group(2)
# Validate that the provider is in the valid providers list
if inside_brackets not in GlobalConfig.VALID_PROVIDERS:
logger.warning(
"Provider '%s' not in VALID_PROVIDERS: %s",
inside_brackets, GlobalConfig.VALID_PROVIDERS
)
return '', ''
# Validate that the model name is not empty
if not outside_brackets.strip():
logger.warning("Empty model name for provider '%s'", inside_brackets)
return '', ''
return inside_brackets, outside_brackets
logger.warning(
"Could not parse provider_model: '%s' (use_ollama=%s)",
provider_model, use_ollama
)
return '', ''
def is_valid_llm_provider_model(
provider: str,
model: str,
api_key: str,
azure_endpoint_url: str = '',
azure_deployment_name: str = '',
azure_api_version: str = '',
) -> bool:
"""
Verify whether LLM settings are proper.
This function does not verify whether `api_key` is correct. It only confirms that the key has
at least five characters. Key verification is done when the LLM is created.
:param provider: Name of the LLM provider.
:param model: Name of the model.
:param api_key: The API key or access token.
:param azure_endpoint_url: Azure OpenAI endpoint URL.
:param azure_deployment_name: Azure OpenAI deployment name.
:param azure_api_version: Azure OpenAI API version.
:return: `True` if the settings "look" OK; `False` otherwise.
"""
if not provider or not model or provider not in GlobalConfig.VALID_PROVIDERS:
return False
if provider != GlobalConfig.PROVIDER_OLLAMA:
# No API key is required for offline Ollama models
if not api_key:
return False
if api_key and API_KEY_REGEX.match(api_key) is None:
return False
if provider == GlobalConfig.PROVIDER_AZURE_OPENAI:
valid_url = urllib3.util.parse_url(azure_endpoint_url)
all_status = all(
[azure_api_version, azure_deployment_name, str(valid_url)]
)
return all_status
return True
def get_litellm_model_name(provider: str, model: str) -> str:
"""
Convert provider and model to LiteLLM model name format.
"""
provider_prefix_map = {
GlobalConfig.PROVIDER_HUGGING_FACE: 'huggingface',
GlobalConfig.PROVIDER_GOOGLE_GEMINI: 'gemini',
GlobalConfig.PROVIDER_AZURE_OPENAI: 'azure',
GlobalConfig.PROVIDER_OPENROUTER: 'openrouter',
GlobalConfig.PROVIDER_COHERE: 'cohere',
GlobalConfig.PROVIDER_TOGETHER_AI: 'together_ai',
GlobalConfig.PROVIDER_OLLAMA: 'ollama',
}
prefix = provider_prefix_map.get(provider)
if prefix:
return '%s/%s' % (prefix, model)
return model
def stream_litellm_completion(
provider: str,
model: str,
messages: list,
max_tokens: int,
api_key: str = '',
azure_endpoint_url: str = '',
azure_deployment_name: str = '',
azure_api_version: str = '',
) -> Iterator[str]:
"""
Stream completion from LiteLLM.
:param provider: The LLM provider.
:param model: The name of the LLM.
:param messages: List of messages for the chat completion.
:param max_tokens: The maximum number of tokens to generate.
:param api_key: API key or access token to use.
:param azure_endpoint_url: Azure OpenAI endpoint URL.
:param azure_deployment_name: Azure OpenAI deployment name.
:param azure_api_version: Azure OpenAI API version.
:return: Iterator of response chunks.
"""
if litellm is None:
raise ImportError("LiteLLM is not installed. Please install it with: pip install litellm")
# Convert to LiteLLM model name
if provider == GlobalConfig.PROVIDER_AZURE_OPENAI:
# For Azure OpenAI, use the deployment name as the model
# This is consistent with Azure OpenAI's requirement to use deployment names
if not azure_deployment_name:
raise ValueError("Azure deployment name is required for Azure OpenAI provider")
litellm_model = 'azure/%s' % azure_deployment_name
else:
litellm_model = get_litellm_model_name(provider, model)
# Prepare the request parameters
request_params = {
'model': litellm_model,
'messages': messages,
'max_tokens': max_tokens,
'temperature': GlobalConfig.LLM_MODEL_TEMPERATURE,
'stream': True,
}
# Set API key and any provider-specific params
if provider != GlobalConfig.PROVIDER_OLLAMA:
# For OpenRouter, pass API key as parameter
if provider == GlobalConfig.PROVIDER_OPENROUTER:
request_params['api_key'] = api_key
elif provider == GlobalConfig.PROVIDER_AZURE_OPENAI:
# For Azure OpenAI, pass credentials as parameters
request_params['api_key'] = api_key
request_params['azure_api_base'] = azure_endpoint_url
request_params['azure_api_version'] = azure_api_version
else:
# For other providers, pass API key as parameter
request_params['api_key'] = api_key
logger.debug('Streaming completion via LiteLLM: %s', litellm_model)
try:
response = litellm.completion(**request_params)
for chunk in response:
if hasattr(chunk, 'choices') and chunk.choices:
choice = chunk.choices[0]
if hasattr(choice, 'delta') and hasattr(choice.delta, 'content'):
if choice.delta.content:
yield choice.delta.content
elif hasattr(choice, 'message') and hasattr(choice.message, 'content'):
if choice.message.content:
yield choice.message.content
except Exception as e:
logger.error('Error in LiteLLM completion: %s', e)
raise
def get_litellm_llm(
provider: str,
model: str,
max_new_tokens: int,
api_key: str = '',
azure_endpoint_url: str = '',
azure_deployment_name: str = '',
azure_api_version: str = '',
) -> Union[object, None]:
"""
Get a LiteLLM-compatible object for streaming.
:param provider: The LLM provider.
:param model: The name of the LLM.
:param max_new_tokens: The maximum number of tokens to generate.
:param api_key: API key or access token to use.
:param azure_endpoint_url: Azure OpenAI endpoint URL.
:param azure_deployment_name: Azure OpenAI deployment name.
:param azure_api_version: Azure OpenAI API version.
:return: A LiteLLM-compatible object for streaming; `None` in case of any error.
"""
if litellm is None:
logger.error("LiteLLM is not installed")
return None
# Create a simple wrapper object that mimics the LangChain streaming interface
class LiteLLMWrapper:
def __init__(
self, provider, model, max_tokens, api_key, azure_endpoint_url,
azure_deployment_name, azure_api_version
):
self.provider = provider
self.model = model
self.max_tokens = max_tokens
self.api_key = api_key
self.azure_endpoint_url = azure_endpoint_url
self.azure_deployment_name = azure_deployment_name
self.azure_api_version = azure_api_version
def stream(self, prompt: str):
messages = [{'role': 'user', 'content': prompt}]
return stream_litellm_completion(
provider=self.provider,
model=self.model,
messages=messages,
max_tokens=self.max_tokens,
api_key=self.api_key,
azure_endpoint_url=self.azure_endpoint_url,
azure_deployment_name=self.azure_deployment_name,
azure_api_version=self.azure_api_version,
)
logger.debug('Creating LiteLLM wrapper for: %s', model)
return LiteLLMWrapper(
provider=provider,
model=model,
max_tokens=max_new_tokens,
api_key=api_key,
azure_endpoint_url=azure_endpoint_url,
azure_deployment_name=azure_deployment_name,
azure_api_version=azure_api_version,
)
# Keep the old function name for backward compatibility
get_langchain_llm = get_litellm_llm
if __name__ == '__main__':
inputs = [
'[co]Cohere',
'[hf]mistralai/Mistral-7B-Instruct-v0.2',
'[gg]gemini-1.5-flash-002'
]
for text in inputs:
print(get_provider_model(text, use_ollama=False))