Spaces:
Running
Running
File size: 10,615 Bytes
cf45a37 0ad77a1 cf45a37 aa4f694 69fbdcb cf45a37 e65d286 0ad77a1 69fbdcb 8537019 e690364 3b3664d cf45a37 3e68ccf 0ad77a1 3e68ccf 69fbdcb 4184417 e65d286 4bd6659 c5a47d3 724babe 9c0dccd 44d6df8 e65d286 aa4f694 e690364 9c0dccd 4184417 69fbdcb 4184417 69fbdcb 4184417 69fbdcb 4184417 69fbdcb e65d286 9c0dccd cf45a37 e65d286 cf45a37 9c0dccd cf45a37 3179f23 17a0c62 3179f23 e65d286 9c0dccd cf45a37 3e68ccf 0ad77a1 69fbdcb e65d286 0ad77a1 69fbdcb 0ad77a1 69fbdcb 0ad77a1 cf45a37 e65d286 0ad77a1 69fbdcb 0ad77a1 b4ec8f7 0ad77a1 3e68ccf 8537019 69fbdcb 44d6df8 69fbdcb 3e68ccf 69fbdcb 0ad77a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
"""
Helper functions to access LLMs using LiteLLM.
"""
import logging
import re
import sys
import urllib3
from typing import Tuple, Union, Iterator
import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
import os
sys.path.append('..')
from global_config import GlobalConfig
try:
import litellm
from litellm import completion, acompletion
except ImportError:
litellm = None
completion = None
acompletion = None
LLM_PROVIDER_MODEL_REGEX = re.compile(r'\[(.*?)\](.*)')
OLLAMA_MODEL_REGEX = re.compile(r'[a-zA-Z0-9._:-]+$')
# 94 characters long, only containing alphanumeric characters, hyphens, and underscores
API_KEY_REGEX = re.compile(r'^[a-zA-Z0-9_-]{6,94}$')
REQUEST_TIMEOUT = 35
OPENROUTER_BASE_URL = 'https://openrouter.ai/api/v1'
logger = logging.getLogger(__name__)
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
logging.getLogger('openai').setLevel(logging.ERROR)
retries = Retry(
total=5,
backoff_factor=0.25,
backoff_jitter=0.3,
status_forcelist=[502, 503, 504],
allowed_methods={'POST'},
)
adapter = HTTPAdapter(max_retries=retries)
http_session = requests.Session()
http_session.mount('https://', adapter)
http_session.mount('http://', adapter)
def get_provider_model(provider_model: str, use_ollama: bool) -> Tuple[str, str]:
"""
Parse and get LLM provider and model name from strings like `[provider]model/name-version`.
:param provider_model: The provider, model name string from `GlobalConfig`.
:param use_ollama: Whether Ollama is used (i.e., running in offline mode).
:return: The provider and the model name; empty strings in case no matching pattern found.
"""
provider_model = provider_model.strip()
if use_ollama:
match = OLLAMA_MODEL_REGEX.match(provider_model)
if match:
return GlobalConfig.PROVIDER_OLLAMA, match.group(0)
else:
match = LLM_PROVIDER_MODEL_REGEX.match(provider_model)
if match:
inside_brackets = match.group(1)
outside_brackets = match.group(2)
return inside_brackets, outside_brackets
return '', ''
def is_valid_llm_provider_model(
provider: str,
model: str,
api_key: str,
azure_endpoint_url: str = '',
azure_deployment_name: str = '',
azure_api_version: str = '',
) -> bool:
"""
Verify whether LLM settings are proper.
This function does not verify whether `api_key` is correct. It only confirms that the key has
at least five characters. Key verification is done when the LLM is created.
:param provider: Name of the LLM provider.
:param model: Name of the model.
:param api_key: The API key or access token.
:param azure_endpoint_url: Azure OpenAI endpoint URL.
:param azure_deployment_name: Azure OpenAI deployment name.
:param azure_api_version: Azure OpenAI API version.
:return: `True` if the settings "look" OK; `False` otherwise.
"""
if not provider or not model or provider not in GlobalConfig.VALID_PROVIDERS:
return False
if provider != GlobalConfig.PROVIDER_OLLAMA:
# No API key is required for offline Ollama models
if not api_key:
return False
if api_key and API_KEY_REGEX.match(api_key) is None:
return False
if provider == GlobalConfig.PROVIDER_AZURE_OPENAI:
valid_url = urllib3.util.parse_url(azure_endpoint_url)
all_status = all(
[azure_api_version, azure_deployment_name, str(valid_url)]
)
return all_status
return True
def get_litellm_model_name(provider: str, model: str) -> str:
"""
Convert provider and model to LiteLLM model name format.
:param provider: The LLM provider.
:param model: The model name.
:return: LiteLLM formatted model name.
"""
provider_prefix_map = {
GlobalConfig.PROVIDER_HUGGING_FACE: "huggingface",
GlobalConfig.PROVIDER_GOOGLE_GEMINI: "gemini",
GlobalConfig.PROVIDER_AZURE_OPENAI: "azure",
GlobalConfig.PROVIDER_OPENROUTER: "openrouter",
GlobalConfig.PROVIDER_COHERE: "cohere",
GlobalConfig.PROVIDER_TOGETHER_AI: "together_ai",
GlobalConfig.PROVIDER_OLLAMA: "ollama",
}
prefix = provider_prefix_map.get(provider)
if prefix:
return f"{prefix}/{model}"
return model
def get_litellm_api_key(provider: str, api_key: str) -> str:
"""
Get the appropriate API key for LiteLLM based on provider.
:param provider: The LLM provider.
:param api_key: The API key.
:return: The API key.
"""
# All current providers just return the api_key, but this is left for future extensibility.
return api_key
def stream_litellm_completion(
provider: str,
model: str,
messages: list,
max_tokens: int,
api_key: str = '',
azure_endpoint_url: str = '',
azure_deployment_name: str = '',
azure_api_version: str = '',
) -> Iterator[str]:
"""
Stream completion from LiteLLM.
:param provider: The LLM provider.
:param model: The name of the LLM.
:param messages: List of messages for the chat completion.
:param max_tokens: The maximum number of tokens to generate.
:param api_key: API key or access token to use.
:param azure_endpoint_url: Azure OpenAI endpoint URL.
:param azure_deployment_name: Azure OpenAI deployment name.
:param azure_api_version: Azure OpenAI API version.
:return: Iterator of response chunks.
"""
if litellm is None:
raise ImportError("LiteLLM is not installed. Please install it with: pip install litellm")
# Convert to LiteLLM model name
litellm_model = get_litellm_model_name(provider, model)
# Prepare the request parameters
request_params = {
"model": litellm_model,
"messages": messages,
"max_tokens": max_tokens,
"temperature": GlobalConfig.LLM_MODEL_TEMPERATURE,
"stream": True,
}
# Set API key based on provider
if provider != GlobalConfig.PROVIDER_OLLAMA:
api_key_to_use = get_litellm_api_key(provider, api_key)
if provider == GlobalConfig.PROVIDER_OPENROUTER:
request_params["api_key"] = api_key_to_use
elif provider == GlobalConfig.PROVIDER_COHERE:
request_params["api_key"] = api_key_to_use
elif provider == GlobalConfig.PROVIDER_TOGETHER_AI:
request_params["api_key"] = api_key_to_use
elif provider == GlobalConfig.PROVIDER_GOOGLE_GEMINI:
request_params["api_key"] = api_key_to_use
elif provider == GlobalConfig.PROVIDER_AZURE_OPENAI:
request_params["api_key"] = api_key_to_use
request_params["azure_endpoint"] = azure_endpoint_url
request_params["azure_deployment"] = azure_deployment_name
request_params["api_version"] = azure_api_version
elif provider == GlobalConfig.PROVIDER_HUGGING_FACE:
request_params["api_key"] = api_key_to_use
logger.debug('Streaming completion via LiteLLM: %s', litellm_model)
try:
response = litellm.completion(**request_params)
for chunk in response:
if hasattr(chunk, 'choices') and chunk.choices:
choice = chunk.choices[0]
if hasattr(choice, 'delta') and hasattr(choice.delta, 'content'):
if choice.delta.content:
yield choice.delta.content
elif hasattr(choice, 'message') and hasattr(choice.message, 'content'):
if choice.message.content:
yield choice.message.content
except Exception as e:
logger.error(f"Error in LiteLLM completion: {e}")
raise
def get_litellm_llm(
provider: str,
model: str,
max_new_tokens: int,
api_key: str = '',
azure_endpoint_url: str = '',
azure_deployment_name: str = '',
azure_api_version: str = '',
) -> Union[object, None]:
"""
Get a LiteLLM-compatible object for streaming.
:param provider: The LLM provider.
:param model: The name of the LLM.
:param max_new_tokens: The maximum number of tokens to generate.
:param api_key: API key or access token to use.
:param azure_endpoint_url: Azure OpenAI endpoint URL.
:param azure_deployment_name: Azure OpenAI deployment name.
:param azure_api_version: Azure OpenAI API version.
:return: A LiteLLM-compatible object for streaming; `None` in case of any error.
"""
if litellm is None:
logger.error("LiteLLM is not installed")
return None
# Create a simple wrapper object that mimics the LangChain streaming interface
class LiteLLMWrapper:
def __init__(self, provider, model, max_tokens, api_key, azure_endpoint_url, azure_deployment_name, azure_api_version):
self.provider = provider
self.model = model
self.max_tokens = max_tokens
self.api_key = api_key
self.azure_endpoint_url = azure_endpoint_url
self.azure_deployment_name = azure_deployment_name
self.azure_api_version = azure_api_version
def stream(self, prompt: str):
messages = [{"role": "user", "content": prompt}]
return stream_litellm_completion(
provider=self.provider,
model=self.model,
messages=messages,
max_tokens=self.max_tokens,
api_key=self.api_key,
azure_endpoint_url=self.azure_endpoint_url,
azure_deployment_name=self.azure_deployment_name,
azure_api_version=self.azure_api_version,
)
logger.debug('Creating LiteLLM wrapper for: %s', model)
return LiteLLMWrapper(
provider=provider,
model=model,
max_tokens=max_new_tokens,
api_key=api_key,
azure_endpoint_url=azure_endpoint_url,
azure_deployment_name=azure_deployment_name,
azure_api_version=azure_api_version,
)
# Keep the old function name for backward compatibility
get_langchain_llm = get_litellm_llm
if __name__ == '__main__':
inputs = [
'[co]Cohere',
'[hf]mistralai/Mistral-7B-Instruct-v0.2',
'[gg]gemini-1.5-flash-002'
]
for text in inputs:
print(get_provider_model(text, use_ollama=False)) |