Spaces:
Running
Running
Create prompt_refiner.py
Browse files- prompt_refiner.py +148 -0
prompt_refiner.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import re
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
+
from huggingface_hub.errors import HfHubHTTPError
|
| 5 |
+
from variables import meta_prompts, prompt_refiner_model
|
| 6 |
+
|
| 7 |
+
class PromptRefiner:
|
| 8 |
+
def __init__(self, api_token: str):
|
| 9 |
+
self.client = InferenceClient(token=api_token, timeout=120)
|
| 10 |
+
self.meta_prompts = meta_prompts
|
| 11 |
+
|
| 12 |
+
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
|
| 13 |
+
try:
|
| 14 |
+
selected_meta_prompt = self.meta_prompts.get(
|
| 15 |
+
meta_prompt_choice,
|
| 16 |
+
self.meta_prompts["star"] # Default to "star" if choice not found
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
messages = [
|
| 20 |
+
{
|
| 21 |
+
"role": "system",
|
| 22 |
+
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"role": "user",
|
| 26 |
+
"content": selected_meta_prompt["template"].replace("[Insert initial prompt here]", prompt)
|
| 27 |
+
}
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
response = self.client.chat_completion(
|
| 31 |
+
model=prompt_refiner_model,
|
| 32 |
+
messages=messages,
|
| 33 |
+
max_tokens=3000,
|
| 34 |
+
temperature=0.8
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
response_content = response.choices[0].message.content.strip()
|
| 38 |
+
|
| 39 |
+
result = self._parse_response(response_content)
|
| 40 |
+
|
| 41 |
+
return (
|
| 42 |
+
result.get('initial_prompt_evaluation', ''),
|
| 43 |
+
result.get('refined_prompt', ''),
|
| 44 |
+
result.get('explanation_of_refinements', ''),
|
| 45 |
+
result
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
except HfHubHTTPError as e:
|
| 49 |
+
return (
|
| 50 |
+
"Error: Model timeout. Please try again later.",
|
| 51 |
+
"The selected model is currently experiencing high traffic.",
|
| 52 |
+
"The selected model is currently experiencing high traffic.",
|
| 53 |
+
{}
|
| 54 |
+
)
|
| 55 |
+
except Exception as e:
|
| 56 |
+
return (
|
| 57 |
+
f"Error: {str(e)}",
|
| 58 |
+
"",
|
| 59 |
+
"An unexpected error occurred.",
|
| 60 |
+
{}
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
def _parse_response(self, response_content: str) -> dict:
|
| 64 |
+
try:
|
| 65 |
+
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
|
| 66 |
+
if json_match:
|
| 67 |
+
json_str = json_match.group(1)
|
| 68 |
+
json_str = re.sub(r'\n\s*', ' ', json_str)
|
| 69 |
+
json_str = json_str.replace('"', '\\"')
|
| 70 |
+
json_output = json.loads(f'"{json_str}"')
|
| 71 |
+
|
| 72 |
+
if isinstance(json_output, str):
|
| 73 |
+
json_output = json.loads(json_output)
|
| 74 |
+
output = {
|
| 75 |
+
key: value.replace('\\"', '"') if isinstance(value, str) else value
|
| 76 |
+
for key, value in json_output.items()
|
| 77 |
+
}
|
| 78 |
+
output['response_content'] = json_output
|
| 79 |
+
return output
|
| 80 |
+
|
| 81 |
+
output = {}
|
| 82 |
+
for key in ["initial_prompt_evaluation", "refined_prompt", "explanation_of_refinements"]:
|
| 83 |
+
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
| 84 |
+
match = re.search(pattern, response_content, re.DOTALL)
|
| 85 |
+
output[key] = match.group(1).replace('\\n', '\n').replace('\\"', '"') if match else ""
|
| 86 |
+
output['response_content'] = response_content
|
| 87 |
+
return output
|
| 88 |
+
|
| 89 |
+
except (json.JSONDecodeError, ValueError) as e:
|
| 90 |
+
print(f"Error parsing response: {e}")
|
| 91 |
+
print(f"Raw content: {response_content}")
|
| 92 |
+
return {
|
| 93 |
+
"initial_prompt_evaluation": "Error parsing response",
|
| 94 |
+
"refined_prompt": "",
|
| 95 |
+
"explanation_of_refinements": str(e),
|
| 96 |
+
'response_content': str(e)
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
def apply_prompt(self, prompt: str, model: str) -> str:
|
| 100 |
+
try:
|
| 101 |
+
messages = [
|
| 102 |
+
{
|
| 103 |
+
"role": "system",
|
| 104 |
+
"content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules:
|
| 105 |
+
|
| 106 |
+
1. Paragraph Spacing:
|
| 107 |
+
- Add TWO blank lines between major sections (##)
|
| 108 |
+
- Add ONE blank line between subsections (###)
|
| 109 |
+
- Add ONE blank line between paragraphs within sections
|
| 110 |
+
- Add ONE blank line before and after lists
|
| 111 |
+
- Add ONE blank line before and after code blocks
|
| 112 |
+
- Add ONE blank line before and after blockquotes
|
| 113 |
+
|
| 114 |
+
2. Section Formatting:
|
| 115 |
+
# Title
|
| 116 |
+
|
| 117 |
+
## Major Section
|
| 118 |
+
|
| 119 |
+
[blank line]
|
| 120 |
+
Content paragraph 1
|
| 121 |
+
[blank line]
|
| 122 |
+
Content paragraph 2
|
| 123 |
+
[blank line]"""
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"role": "user",
|
| 127 |
+
"content": prompt
|
| 128 |
+
}
|
| 129 |
+
]
|
| 130 |
+
|
| 131 |
+
response = self.client.chat_completion(
|
| 132 |
+
model=model,
|
| 133 |
+
messages=messages,
|
| 134 |
+
max_tokens=3000,
|
| 135 |
+
temperature=0.8,
|
| 136 |
+
stream=True
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
full_response = ""
|
| 140 |
+
|
| 141 |
+
for chunk in response:
|
| 142 |
+
if chunk.choices[0].delta.content is not None:
|
| 143 |
+
full_response += chunk.choices[0].delta.content
|
| 144 |
+
|
| 145 |
+
return full_response.replace('\n\n', '\n').strip()
|
| 146 |
+
|
| 147 |
+
except Exception as e:
|
| 148 |
+
return f"Error: {str(e)}"
|