Spaces:
Running
Running
Update prompt_refiner.py
Browse files- prompt_refiner.py +200 -190
prompt_refiner.py
CHANGED
|
@@ -7,207 +7,217 @@ from huggingface_hub.errors import HfHubHTTPError
|
|
| 7 |
from variables import *
|
| 8 |
|
| 9 |
class LLMResponse(BaseModel):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
class PromptRefiner:
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
| 7 |
from variables import *
|
| 8 |
|
| 9 |
class LLMResponse(BaseModel):
|
| 10 |
+
initial_prompt_evaluation: str = Field(..., description="Evaluation of the initial prompt")
|
| 11 |
+
refined_prompt: str = Field(..., description="The refined version of the prompt")
|
| 12 |
+
explanation_of_refinements: Union[str, List[str]] = Field(..., description="Explanation of the refinements made")
|
| 13 |
+
response_content: Optional[Union[Dict[str, Any], str]] = Field(None, description="Raw response content")
|
| 14 |
|
| 15 |
+
@validator('response_content', pre=True)
|
| 16 |
+
def validate_response_content(cls, v):
|
| 17 |
+
if isinstance(v, str):
|
| 18 |
+
try:
|
| 19 |
+
return json.loads(v)
|
| 20 |
+
except json.JSONDecodeError:
|
| 21 |
+
return {"raw_content": v}
|
| 22 |
+
return v
|
| 23 |
|
| 24 |
+
@validator('initial_prompt_evaluation', 'refined_prompt')
|
| 25 |
+
def clean_text_fields(cls, v):
|
| 26 |
+
if isinstance(v, str):
|
| 27 |
+
return v.strip().replace('\\n', '\n').replace('\\"', '"')
|
| 28 |
+
return v
|
| 29 |
+
|
| 30 |
+
@validator('explanation_of_refinements')
|
| 31 |
+
def clean_refinements(cls, v):
|
| 32 |
+
if isinstance(v, str):
|
| 33 |
+
return v.strip().replace('\\n', '\n').replace('\\"', '"')
|
| 34 |
+
elif isinstance(v, list):
|
| 35 |
+
return [item.strip().replace('\\n', '\n').replace('\\"', '"').replace('•', '-')
|
| 36 |
+
for item in v if isinstance(item, str)]
|
| 37 |
+
return v
|
| 38 |
|
| 39 |
class PromptRefiner:
|
| 40 |
+
def __init__(self, api_token: str, meta_prompts: dict):
|
| 41 |
+
self.client = InferenceClient(token=api_token, timeout=120)
|
| 42 |
+
self.meta_prompts = meta_prompts
|
| 43 |
|
| 44 |
+
def _clean_json_string(self, content: str) -> str:
|
| 45 |
+
"""Clean and prepare JSON string for parsing."""
|
| 46 |
+
content = content.replace('•', '-') # Replace bullet points
|
| 47 |
+
content = re.sub(r'\s+', ' ', content) # Normalize whitespace
|
| 48 |
+
content = content.replace('\\"', '"') # Fix escaped quotes
|
| 49 |
+
return content.strip()
|
| 50 |
|
| 51 |
+
def _parse_response(self, response_content: str) -> dict:
|
| 52 |
+
"""Parse the LLM response with enhanced error handling."""
|
| 53 |
+
try:
|
| 54 |
+
# Extract content between <json> tags
|
| 55 |
+
json_match = re.search(r'<json>\s*(.*?)\s*</json>', response_content, re.DOTALL)
|
| 56 |
+
if json_match:
|
| 57 |
+
json_str = self._clean_json_string(json_match.group(1))
|
| 58 |
+
try:
|
| 59 |
+
# Try parsing the cleaned JSON
|
| 60 |
+
parsed_json = json.loads(json_str)
|
| 61 |
+
if isinstance(parsed_json, str):
|
| 62 |
+
parsed_json = json.loads(parsed_json)
|
| 63 |
+
|
| 64 |
+
return {
|
| 65 |
+
"initial_prompt_evaluation": parsed_json.get("initial_prompt_evaluation", ""),
|
| 66 |
+
"refined_prompt": parsed_json.get("refined_prompt", ""),
|
| 67 |
+
"explanation_of_refinements": parsed_json.get("explanation_of_refinements", ""),
|
| 68 |
+
"response_content": parsed_json if isinstance(parsed_json, dict) else {"raw_content": parsed_json}
|
| 69 |
+
}
|
| 70 |
+
except json.JSONDecodeError:
|
| 71 |
+
# If JSON parsing fails, try regex parsing
|
| 72 |
+
return self._parse_with_regex(json_str)
|
| 73 |
+
|
| 74 |
+
# If no JSON tags found, try regex parsing
|
| 75 |
+
return self._parse_with_regex(response_content)
|
| 76 |
|
| 77 |
+
except Exception as e:
|
| 78 |
+
print(f"Error parsing response: {str(e)}")
|
| 79 |
+
print(f"Raw content: {response_content}")
|
| 80 |
+
return self._create_error_dict(str(e))
|
| 81 |
|
| 82 |
+
def _parse_with_regex(self, content: str) -> dict:
|
| 83 |
+
"""Parse content using regex when JSON parsing fails."""
|
| 84 |
+
output = {}
|
| 85 |
+
|
| 86 |
+
# Handle explanation_of_refinements list format
|
| 87 |
+
refinements_match = re.search(r'"explanation_of_refinements":\s*$(.*?)$', content, re.DOTALL)
|
| 88 |
+
if refinements_match:
|
| 89 |
+
refinements_str = refinements_match.group(1)
|
| 90 |
+
refinements = [
|
| 91 |
+
item.strip().strip('"').strip("'").replace('•', '-')
|
| 92 |
+
for item in re.findall(r'[•"]([^"•]+)[•"]', refinements_str)
|
| 93 |
+
]
|
| 94 |
+
output["explanation_of_refinements"] = refinements
|
| 95 |
+
else:
|
| 96 |
+
# Try single string format
|
| 97 |
+
pattern = r'"explanation_of_refinements":\s*"(.*?)"(?:,|\})'
|
| 98 |
+
match = re.search(pattern, content, re.DOTALL)
|
| 99 |
+
output["explanation_of_refinements"] = match.group(1).strip() if match else ""
|
| 100 |
|
| 101 |
+
# Extract other fields
|
| 102 |
+
for key in ["initial_prompt_evaluation", "refined_prompt"]:
|
| 103 |
+
pattern = rf'"{key}":\s*"(.*?)"(?:,|\}})'
|
| 104 |
+
match = re.search(pattern, content, re.DOTALL)
|
| 105 |
+
output[key] = match.group(1).strip() if match else ""
|
| 106 |
+
|
| 107 |
+
# Store the original content in a structured way
|
| 108 |
+
output["response_content"] = {"raw_content": content}
|
| 109 |
+
return output
|
| 110 |
|
| 111 |
+
def _create_error_dict(self, error_message: str) -> dict:
|
| 112 |
+
"""Create a standardized error response dictionary."""
|
| 113 |
+
return {
|
| 114 |
+
"initial_prompt_evaluation": f"Error parsing response: {error_message}",
|
| 115 |
+
"refined_prompt": "",
|
| 116 |
+
"explanation_of_refinements": "",
|
| 117 |
+
"response_content": {"error": error_message}
|
| 118 |
+
}
|
| 119 |
|
| 120 |
+
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> Tuple[str, str, str, dict]:
|
| 121 |
+
"""Refine the given prompt using the selected meta prompt."""
|
| 122 |
+
try:
|
| 123 |
+
selected_meta_prompt = self.meta_prompts.get(
|
| 124 |
+
meta_prompt_choice,
|
| 125 |
+
self.meta_prompts["star"]
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
messages = [
|
| 129 |
+
{
|
| 130 |
+
"role": "system",
|
| 131 |
+
"content": 'You are an expert at refining and extending prompts. Given a basic prompt, provide a more relevant and detailed prompt.'
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"role": "user",
|
| 135 |
+
"content": selected_meta_prompt.replace("[Insert initial prompt here]", prompt)
|
| 136 |
+
}
|
| 137 |
+
]
|
| 138 |
+
|
| 139 |
+
response = self.client.chat_completion(
|
| 140 |
+
model=prompt_refiner_model,
|
| 141 |
+
messages=messages,
|
| 142 |
+
max_tokens=3000,
|
| 143 |
+
temperature=0.8
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
response_content = response.choices[0].message.content.strip()
|
| 147 |
+
result = self._parse_response(response_content)
|
| 148 |
+
|
| 149 |
+
try:
|
| 150 |
+
llm_response = LLMResponse(**result)
|
| 151 |
+
return (
|
| 152 |
+
llm_response.initial_prompt_evaluation,
|
| 153 |
+
llm_response.refined_prompt,
|
| 154 |
+
llm_response.explanation_of_refinements,
|
| 155 |
+
llm_response.dict()
|
| 156 |
+
)
|
| 157 |
+
except Exception as e:
|
| 158 |
+
print(f"Error creating LLMResponse: {e}")
|
| 159 |
+
return self._create_error_response(f"Error validating response: {str(e)}")
|
| 160 |
|
| 161 |
+
except HfHubHTTPError as e:
|
| 162 |
+
return self._create_error_response("Model timeout. Please try again later.")
|
| 163 |
+
except Exception as e:
|
| 164 |
+
return self._create_error_response(f"Unexpected error: {str(e)}")
|
| 165 |
|
| 166 |
+
def _create_error_response(self, error_message: str) -> Tuple[str, str, str, dict]:
|
| 167 |
+
"""Create a standardized error response tuple."""
|
| 168 |
+
return (
|
| 169 |
+
f"Error: {error_message}",
|
| 170 |
+
"The selected model is currently unavailable.",
|
| 171 |
+
"An error occurred during processing.",
|
| 172 |
+
{"error": error_message}
|
| 173 |
+
)
|
| 174 |
|
| 175 |
+
def apply_prompt(self, prompt: str, model: str) -> str:
|
| 176 |
+
"""Apply formatting to the prompt using the specified model."""
|
| 177 |
+
try:
|
| 178 |
+
messages = [
|
| 179 |
+
{
|
| 180 |
+
"role": "system",
|
| 181 |
+
"content": """You are a markdown formatting expert. Format your responses with proper spacing and structure following these rules:
|
| 182 |
+
1. Paragraph Spacing:
|
| 183 |
+
- Add TWO blank lines between major sections (##)
|
| 184 |
+
- Add ONE blank line between subsections (###)
|
| 185 |
+
- Add ONE blank line between paragraphs within sections
|
| 186 |
+
- Add ONE blank line before and after lists
|
| 187 |
+
- Add ONE blank line before and after code blocks
|
| 188 |
+
- Add ONE blank line before and after blockquotes
|
| 189 |
+
|
| 190 |
+
2. Section Formatting:
|
| 191 |
+
# Title
|
| 192 |
+
|
| 193 |
+
## Major Section
|
| 194 |
+
|
| 195 |
+
[blank line]
|
| 196 |
+
Content paragraph 1
|
| 197 |
+
[blank line]
|
| 198 |
+
Content paragraph 2
|
| 199 |
+
[blank line]"""
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"role": "user",
|
| 203 |
+
"content": prompt
|
| 204 |
+
}
|
| 205 |
+
]
|
| 206 |
+
|
| 207 |
+
response = self.client.chat_completion(
|
| 208 |
+
model=model,
|
| 209 |
+
messages=messages,
|
| 210 |
+
max_tokens=3000,
|
| 211 |
+
temperature=0.8,
|
| 212 |
+
stream=True
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
full_response = ""
|
| 216 |
+
for chunk in response:
|
| 217 |
+
if chunk.choices[0].delta.content is not None:
|
| 218 |
+
full_response += chunk.choices[0].delta.content
|
| 219 |
+
|
| 220 |
+
return full_response.replace('\n\n', '\n').strip()
|
| 221 |
+
|
| 222 |
+
except Exception as e:
|
| 223 |
+
return f"Error: {str(e)}"
|