Spaces:
Runtime error
Runtime error
| from typing import List, Dict | |
| import httpx | |
| import gradio as gr | |
| import pandas as pd | |
| from huggingface_hub import HfApi, ModelCard | |
| def search_hub(query: str, search_type: str) -> pd.DataFrame: | |
| api = HfApi() | |
| if search_type == "Models": | |
| results = api.list_models(search=query) | |
| data = [{"id": model.modelId, "author": model.author, "downloads": model.downloads, "link": f"https://huggingface.co/{model.modelId}"} for model in results] | |
| elif search_type == "Datasets": | |
| results = api.list_datasets(search=query) | |
| data = [{"id": dataset.id, "author": dataset.author, "downloads": dataset.downloads, "link": f"https://huggingface.co/datasets/{dataset.id}"} for dataset in results] | |
| elif search_type == "Spaces": | |
| results = api.list_spaces(search=query) | |
| data = [{"id": space.id, "author": space.author, "link": f"https://huggingface.co/spaces/{space.id}"} for space in results] | |
| else: | |
| data = [] | |
| # Add numbering and format the link | |
| for i, item in enumerate(data, 1): | |
| item['number'] = i | |
| item['formatted_link'] = format_link(item, i, search_type) | |
| return pd.DataFrame(data) | |
| def format_link(item: Dict, number: int, search_type: str) -> str: | |
| link = item['link'] | |
| readme_link = f"{link}/blob/main/README.md" | |
| title = f"{number}. {item['id']}" | |
| metadata = f"Author: {item['author']}" | |
| if 'downloads' in item: | |
| metadata += f", Downloads: {item['downloads']}" | |
| html = f""" | |
| <div style="margin-bottom: 10px;"> | |
| <strong>{title}</strong><br> | |
| <a href="{link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View {search_type[:-1]}</a> | | |
| <a href="{readme_link}" target="_blank" style="color: #4a90e2; text-decoration: none;">View README</a><br> | |
| <small>{metadata}</small> | |
| </div> | |
| """ | |
| return html | |
| def display_results(df: pd.DataFrame): | |
| if df is not None and not df.empty: | |
| html = "<div style='max-height: 400px; overflow-y: auto;'>" | |
| for _, row in df.iterrows(): | |
| html += row['formatted_link'] | |
| html += "</div>" | |
| return html | |
| else: | |
| return "<p>No results found.</p>" | |
| def load_metadata(evt: gr.SelectData, df: pd.DataFrame, search_type: str): | |
| if df is not None and not df.empty and evt.index[0] < len(df): | |
| item_id = df.iloc[evt.index[0]]['id'] | |
| if search_type == "Models": | |
| try: | |
| card = ModelCard.load(item_id) | |
| return str(card) | |
| except Exception as e: | |
| return f"Error loading model card: {str(e)}" | |
| elif search_type == "Datasets": | |
| api = HfApi() | |
| metadata = api.dataset_info(item_id) | |
| return str(metadata) | |
| elif search_type == "Spaces": | |
| api = HfApi() | |
| metadata = api.space_info(item_id) | |
| return str(metadata) | |
| else: | |
| return "" | |
| else: | |
| return "" | |
| def SwarmyTime(data: List[Dict]) -> Dict: | |
| """ | |
| Aggregates all content from the given data. | |
| :param data: List of dictionaries containing the search results | |
| :return: Dictionary with aggregated content | |
| """ | |
| aggregated = { | |
| "total_items": len(data), | |
| "unique_authors": set(), | |
| "total_downloads": 0, | |
| "item_types": {"Models": 0, "Datasets": 0, "Spaces": 0} | |
| } | |
| for item in data: | |
| aggregated["unique_authors"].add(item.get("author", "Unknown")) | |
| aggregated["total_downloads"] += item.get("downloads", 0) | |
| if "modelId" in item: | |
| aggregated["item_types"]["Models"] += 1 | |
| elif "dataset" in item.get("id", ""): | |
| aggregated["item_types"]["Datasets"] += 1 | |
| else: | |
| aggregated["item_types"]["Spaces"] += 1 | |
| aggregated["unique_authors"] = len(aggregated["unique_authors"]) | |
| return aggregated | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Search the Hugging Face Hub") | |
| with gr.Row(): | |
| search_query = gr.Textbox(label="Search Query", value="awacke1") | |
| search_type = gr.Radio(["Models", "Datasets", "Spaces"], label="Search Type", value="Models") | |
| search_button = gr.Button("Search") | |
| results_html = gr.HTML(label="Search Results") | |
| metadata_output = gr.Textbox(label="Metadata", lines=10) | |
| aggregated_output = gr.JSON(label="Aggregated Content") | |
| def search_and_aggregate(query, search_type): | |
| df = search_hub(query, search_type) | |
| aggregated = SwarmyTime(df.to_dict('records')) | |
| html_results = display_results(df) | |
| return html_results, aggregated | |
| search_button.click(search_and_aggregate, inputs=[search_query, search_type], outputs=[results_html, aggregated_output]) | |
| demo.launch(debug=True) |