Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -191,6 +191,7 @@ def StreamLLMChatResponse(prompt):
|
|
| 191 |
endpoint_url = API_URL
|
| 192 |
hf_token = API_KEY
|
| 193 |
client = InferenceClient(endpoint_url, token=hf_token)
|
|
|
|
| 194 |
gen_kwargs = dict(
|
| 195 |
max_new_tokens=512,
|
| 196 |
top_k=30,
|
|
@@ -251,7 +252,8 @@ def transcribe_audio(openai_key, file_path, model):
|
|
| 251 |
"Authorization": f"Bearer {openai_key}",
|
| 252 |
}
|
| 253 |
with open(file_path, 'rb') as f:
|
| 254 |
-
data = {'file': f
|
|
|
|
| 255 |
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
|
| 256 |
if response.status_code == 200:
|
| 257 |
st.write(response.json())
|
|
@@ -377,7 +379,8 @@ def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
|
| 377 |
report = []
|
| 378 |
res_box = st.empty()
|
| 379 |
collected_chunks = []
|
| 380 |
-
collected_messages =
|
|
|
|
| 381 |
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
|
| 382 |
collected_chunks.append(chunk)
|
| 383 |
chunk_message = chunk['choices'][0]['delta']
|
|
@@ -451,6 +454,7 @@ def txt2chunks(text):
|
|
| 451 |
# Vector Store using FAISS
|
| 452 |
@st.cache_resource
|
| 453 |
def vector_store(text_chunks):
|
|
|
|
| 454 |
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
| 455 |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
| 456 |
|
|
@@ -528,7 +532,8 @@ headers = {
|
|
| 528 |
#@st.cache_resource
|
| 529 |
def query(filename):
|
| 530 |
with open(filename, "rb") as f:
|
| 531 |
-
data = f.read
|
|
|
|
| 532 |
response = requests.post(API_URL_IE, headers=headers, data=data)
|
| 533 |
return response.json()
|
| 534 |
|
|
|
|
| 191 |
endpoint_url = API_URL
|
| 192 |
hf_token = API_KEY
|
| 193 |
client = InferenceClient(endpoint_url, token=hf_token)
|
| 194 |
+
st.write('Opened HF hub Inference Client for endpoint URL: ' + endpoint_url)
|
| 195 |
gen_kwargs = dict(
|
| 196 |
max_new_tokens=512,
|
| 197 |
top_k=30,
|
|
|
|
| 252 |
"Authorization": f"Bearer {openai_key}",
|
| 253 |
}
|
| 254 |
with open(file_path, 'rb') as f:
|
| 255 |
+
data = {'file': f
|
| 256 |
+
st.write('Transcribe Audio is Posting request to ' + OPENAI_API_URL)
|
| 257 |
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
|
| 258 |
if response.status_code == 200:
|
| 259 |
st.write(response.json())
|
|
|
|
| 379 |
report = []
|
| 380 |
res_box = st.empty()
|
| 381 |
collected_chunks = []
|
| 382 |
+
collected_messages =
|
| 383 |
+
st.write('Running prompt with ' + model)
|
| 384 |
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
|
| 385 |
collected_chunks.append(chunk)
|
| 386 |
chunk_message = chunk['choices'][0]['delta']
|
|
|
|
| 454 |
# Vector Store using FAISS
|
| 455 |
@st.cache_resource
|
| 456 |
def vector_store(text_chunks):
|
| 457 |
+
st.write('Retrieving OpenAI embeddings')
|
| 458 |
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
| 459 |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
| 460 |
|
|
|
|
| 532 |
#@st.cache_resource
|
| 533 |
def query(filename):
|
| 534 |
with open(filename, "rb") as f:
|
| 535 |
+
data = f.read
|
| 536 |
+
st.write('Posting request to model ' + API_URL_IE)
|
| 537 |
response = requests.post(API_URL_IE, headers=headers, data=data)
|
| 538 |
return response.json()
|
| 539 |
|