Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,22 +33,79 @@ from PyPDF2 import PdfReader
|
|
| 33 |
from templates import bot_template, css, user_template
|
| 34 |
from xml.etree import ElementTree as ET
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
API_KEY = os.getenv('API_KEY')
|
|
|
|
|
|
|
|
|
|
| 39 |
headers = {
|
| 40 |
-
"Authorization": f"Bearer {
|
| 41 |
"Content-Type": "application/json"
|
| 42 |
}
|
| 43 |
key = os.getenv('OPENAI_API_KEY')
|
| 44 |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
| 45 |
# page config and sidebar declares up front allow all other functions to see global class variables
|
| 46 |
-
st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")
|
| 47 |
-
|
| 48 |
-
# UI Controls
|
| 49 |
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
|
| 50 |
|
| 51 |
-
#
|
| 52 |
def add_witty_humor_buttons():
|
| 53 |
with st.expander("Wit and Humor 🤣", expanded=True):
|
| 54 |
# Tip about the Dromedary family
|
|
@@ -94,8 +151,40 @@ def add_witty_humor_buttons():
|
|
| 94 |
if col7[0].button("More Funny Rhymes 🎙️"):
|
| 95 |
StreamLLMChatResponse(descriptions["More Funny Rhymes 🎙️"])
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
def StreamLLMChatResponse(prompt):
|
| 100 |
|
| 101 |
try:
|
|
@@ -132,27 +221,27 @@ def StreamLLMChatResponse(prompt):
|
|
| 132 |
|
| 133 |
except:
|
| 134 |
st.write('Stream llm issue')
|
| 135 |
-
|
| 136 |
except:
|
| 137 |
-
st.write('
|
| 138 |
-
|
| 139 |
-
|
| 140 |
|
|
|
|
| 141 |
def query(payload):
|
| 142 |
response = requests.post(API_URL, headers=headers, json=payload)
|
| 143 |
st.markdown(response.json())
|
| 144 |
return response.json()
|
| 145 |
-
|
| 146 |
def get_output(prompt):
|
| 147 |
return query({"inputs": prompt})
|
| 148 |
|
|
|
|
| 149 |
def generate_filename(prompt, file_type):
|
| 150 |
central = pytz.timezone('US/Central')
|
| 151 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
| 152 |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
| 153 |
-
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:
|
| 154 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
| 155 |
|
|
|
|
| 156 |
def transcribe_audio(openai_key, file_path, model):
|
| 157 |
openai.api_key = openai_key
|
| 158 |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
|
|
@@ -176,6 +265,7 @@ def transcribe_audio(openai_key, file_path, model):
|
|
| 176 |
st.error("Error in API call.")
|
| 177 |
return None
|
| 178 |
|
|
|
|
| 179 |
def save_and_play_audio(audio_recorder):
|
| 180 |
audio_bytes = audio_recorder(key='audio_recorder')
|
| 181 |
if audio_bytes:
|
|
@@ -186,34 +276,35 @@ def save_and_play_audio(audio_recorder):
|
|
| 186 |
return filename
|
| 187 |
return None
|
| 188 |
|
|
|
|
| 189 |
def create_file(filename, prompt, response, should_save=True):
|
| 190 |
if not should_save:
|
| 191 |
return
|
| 192 |
base_filename, ext = os.path.splitext(filename)
|
| 193 |
has_python_code = bool(re.search(r"```python([\s\S]*?)```", response))
|
| 194 |
if ext in ['.txt', '.htm', '.md']:
|
| 195 |
-
with open(f"{base_filename}
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
file.write(response)
|
| 199 |
if has_python_code:
|
| 200 |
python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
|
| 201 |
with open(f"{base_filename}-Code.py", 'w') as file:
|
| 202 |
file.write(python_code)
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
def truncate_document(document, length):
|
| 205 |
return document[:length]
|
| 206 |
-
|
| 207 |
def divide_document(document, max_length):
|
| 208 |
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
|
| 209 |
|
|
|
|
|
|
|
| 210 |
def get_table_download_link(file_path):
|
| 211 |
with open(file_path, 'r') as file:
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
except:
|
| 215 |
-
st.write('')
|
| 216 |
-
return file_path
|
| 217 |
b64 = base64.b64encode(data.encode()).decode()
|
| 218 |
file_name = os.path.basename(file_path)
|
| 219 |
ext = os.path.splitext(file_name)[1] # get the file extension
|
|
@@ -234,13 +325,16 @@ def get_table_download_link(file_path):
|
|
| 234 |
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
|
| 235 |
return href
|
| 236 |
|
|
|
|
| 237 |
def CompressXML(xml_text):
|
| 238 |
root = ET.fromstring(xml_text)
|
| 239 |
for elem in list(root.iter()):
|
| 240 |
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
|
| 241 |
elem.parent.remove(elem)
|
| 242 |
return ET.tostring(root, encoding='unicode', method="xml")
|
| 243 |
-
|
|
|
|
|
|
|
| 244 |
def read_file_content(file,max_length):
|
| 245 |
if file.type == "application/json":
|
| 246 |
content = json.load(file)
|
|
@@ -262,6 +356,8 @@ def read_file_content(file,max_length):
|
|
| 262 |
else:
|
| 263 |
return ""
|
| 264 |
|
|
|
|
|
|
|
| 265 |
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
| 266 |
model = model_choice
|
| 267 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
|
@@ -290,6 +386,8 @@ def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
|
| 290 |
st.write(time.time() - start_time)
|
| 291 |
return full_reply_content
|
| 292 |
|
|
|
|
|
|
|
| 293 |
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
|
| 294 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
| 295 |
conversation.append({'role': 'user', 'content': prompt})
|
|
@@ -321,31 +419,34 @@ def extract_file_extension(file):
|
|
| 321 |
else:
|
| 322 |
raise ValueError(f"Unable to extract file extension from {file_name}")
|
| 323 |
|
|
|
|
|
|
|
| 324 |
def pdf2txt(docs):
|
| 325 |
text = ""
|
| 326 |
for file in docs:
|
| 327 |
file_extension = extract_file_extension(file)
|
| 328 |
st.write(f"File type extension: {file_extension}")
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
|
| 337 |
-
except Exception as e:
|
| 338 |
-
st.write(f"Error processing file {file.name}: {e}")
|
| 339 |
return text
|
| 340 |
|
| 341 |
def txt2chunks(text):
|
| 342 |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
|
| 343 |
return text_splitter.split_text(text)
|
| 344 |
|
|
|
|
|
|
|
| 345 |
def vector_store(text_chunks):
|
| 346 |
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
| 347 |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
| 348 |
|
|
|
|
|
|
|
| 349 |
def get_chain(vectorstore):
|
| 350 |
llm = ChatOpenAI()
|
| 351 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
|
@@ -378,13 +479,18 @@ def divide_prompt(prompt, max_length):
|
|
| 378 |
chunks.append(' '.join(current_chunk))
|
| 379 |
return chunks
|
| 380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
def create_zip_of_files(files):
|
| 382 |
zip_name = "all_files.zip"
|
| 383 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
| 384 |
for file in files:
|
| 385 |
zipf.write(file)
|
| 386 |
return zip_name
|
| 387 |
-
|
|
|
|
| 388 |
def get_zip_download_link(zip_file):
|
| 389 |
with open(zip_file, 'rb') as f:
|
| 390 |
data = f.read()
|
|
@@ -392,13 +498,24 @@ def get_zip_download_link(zip_file):
|
|
| 392 |
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
| 393 |
return href
|
| 394 |
|
| 395 |
-
|
|
|
|
| 396 |
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
headers = {
|
| 398 |
-
|
| 399 |
-
|
| 400 |
}
|
| 401 |
|
|
|
|
| 402 |
def query(filename):
|
| 403 |
with open(filename, "rb") as f:
|
| 404 |
data = f.read()
|
|
@@ -412,7 +529,7 @@ def generate_filename(prompt, file_type):
|
|
| 412 |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
| 413 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
| 414 |
|
| 415 |
-
#
|
| 416 |
def save_and_play_audio(audio_recorder):
|
| 417 |
audio_bytes = audio_recorder()
|
| 418 |
if audio_bytes:
|
|
@@ -422,7 +539,7 @@ def save_and_play_audio(audio_recorder):
|
|
| 422 |
st.audio(audio_bytes, format="audio/wav")
|
| 423 |
return filename
|
| 424 |
|
| 425 |
-
#
|
| 426 |
def transcribe_audio(filename):
|
| 427 |
output = query(filename)
|
| 428 |
return output
|
|
@@ -435,7 +552,11 @@ def whisper_main():
|
|
| 435 |
filename = save_and_play_audio(audio_recorder)
|
| 436 |
if filename is not None:
|
| 437 |
transcription = transcribe_audio(filename)
|
| 438 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
st.write(transcription)
|
| 440 |
response = StreamLLMChatResponse(transcription)
|
| 441 |
# st.write(response) - redundant with streaming result?
|
|
@@ -443,6 +564,8 @@ def whisper_main():
|
|
| 443 |
create_file(filename, transcription, response, should_save)
|
| 444 |
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
| 445 |
|
|
|
|
|
|
|
| 446 |
def main():
|
| 447 |
|
| 448 |
st.title("AI Drome Llama")
|
|
@@ -461,14 +584,7 @@ def main():
|
|
| 461 |
openai.api_key = os.getenv('OPENAI_KEY')
|
| 462 |
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
|
| 463 |
choice = st.sidebar.selectbox("Output File Type:", menu)
|
| 464 |
-
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
| 465 |
-
|
| 466 |
-
#filename = save_and_play_audio(audio_recorder)
|
| 467 |
-
#if filename is not None:
|
| 468 |
-
# transcription = transcribe_audio(key, filename, "whisper-1")
|
| 469 |
-
# st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
| 470 |
-
# filename = None
|
| 471 |
-
|
| 472 |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
| 473 |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
| 474 |
with collength:
|
|
@@ -512,6 +628,8 @@ def main():
|
|
| 512 |
filename = generate_filename(user_prompt, choice)
|
| 513 |
create_file(filename, user_prompt, response, should_save)
|
| 514 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
|
|
|
|
|
|
| 515 |
all_files = glob.glob("*.*")
|
| 516 |
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
|
| 517 |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
|
@@ -547,17 +665,32 @@ def main():
|
|
| 547 |
if st.button("🗑", key="delete_"+file):
|
| 548 |
os.remove(file)
|
| 549 |
st.experimental_rerun()
|
|
|
|
|
|
|
| 550 |
if len(file_contents) > 0:
|
| 551 |
if next_action=='open':
|
| 552 |
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
|
|
|
| 553 |
if next_action=='md':
|
| 554 |
st.markdown(file_contents)
|
|
|
|
| 555 |
if next_action=='search':
|
| 556 |
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
| 557 |
st.write('Reasoning with your inputs...')
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
st.experimental_rerun()
|
| 562 |
|
| 563 |
# Feedback
|
|
@@ -588,6 +721,7 @@ def main():
|
|
| 588 |
filename = generate_filename(raw, 'txt')
|
| 589 |
create_file(filename, raw, '', should_save)
|
| 590 |
|
|
|
|
| 591 |
if __name__ == "__main__":
|
| 592 |
whisper_main()
|
| 593 |
-
main()
|
|
|
|
| 33 |
from templates import bot_template, css, user_template
|
| 34 |
from xml.etree import ElementTree as ET
|
| 35 |
|
| 36 |
+
def add_Med_Licensing_Exam_Dataset():
|
| 37 |
+
import streamlit as st
|
| 38 |
+
from datasets import load_dataset
|
| 39 |
+
dataset = load_dataset("augtoma/usmle_step_1")['test'] # Using 'test' split
|
| 40 |
+
st.title("USMLE Step 1 Dataset Viewer")
|
| 41 |
+
if len(dataset) == 0:
|
| 42 |
+
st.write("😢 The dataset is empty.")
|
| 43 |
+
else:
|
| 44 |
+
st.write("""
|
| 45 |
+
🔍 Use the search box to filter questions or use the grid to scroll through the dataset.
|
| 46 |
+
""")
|
| 47 |
+
|
| 48 |
+
# 👩🔬 Search Box
|
| 49 |
+
search_term = st.text_input("Search for a specific question:", "")
|
| 50 |
+
# 🎛 Pagination
|
| 51 |
+
records_per_page = 100
|
| 52 |
+
num_records = len(dataset)
|
| 53 |
+
num_pages = max(int(num_records / records_per_page), 1)
|
| 54 |
+
|
| 55 |
+
# Skip generating the slider if num_pages is 1 (i.e., all records fit in one page)
|
| 56 |
+
if num_pages > 1:
|
| 57 |
+
page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1)))
|
| 58 |
+
else:
|
| 59 |
+
page_number = 1 # Only one page
|
| 60 |
+
|
| 61 |
+
# 📊 Display Data
|
| 62 |
+
start_idx = (page_number - 1) * records_per_page
|
| 63 |
+
end_idx = start_idx + records_per_page
|
| 64 |
+
|
| 65 |
+
# 🧪 Apply the Search Filter
|
| 66 |
+
filtered_data = []
|
| 67 |
+
for record in dataset[start_idx:end_idx]:
|
| 68 |
+
if isinstance(record, dict) and 'text' in record and 'id' in record:
|
| 69 |
+
if search_term:
|
| 70 |
+
if search_term.lower() in record['text'].lower():
|
| 71 |
+
filtered_data.append(record)
|
| 72 |
+
else:
|
| 73 |
+
filtered_data.append(record)
|
| 74 |
+
|
| 75 |
+
# 🌐 Render the Grid
|
| 76 |
+
for record in filtered_data:
|
| 77 |
+
st.write(f"## Question ID: {record['id']}")
|
| 78 |
+
st.write(f"### Question:")
|
| 79 |
+
st.write(f"{record['text']}")
|
| 80 |
+
st.write(f"### Answer:")
|
| 81 |
+
st.write(f"{record['answer']}")
|
| 82 |
+
st.write("---")
|
| 83 |
+
|
| 84 |
+
st.write(f"😊 Total Records: {num_records} | 📄 Displaying {start_idx+1} to {min(end_idx, num_records)}")
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
# 1. Constants and Top Level UI Variables
|
| 89 |
+
|
| 90 |
+
# My Inference API Copy
|
| 91 |
+
# API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
|
| 92 |
+
# Original:
|
| 93 |
+
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
| 94 |
API_KEY = os.getenv('API_KEY')
|
| 95 |
+
MODEL1="meta-llama/Llama-2-7b-chat-hf"
|
| 96 |
+
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
|
| 97 |
+
HF_KEY = os.getenv('HF_KEY')
|
| 98 |
headers = {
|
| 99 |
+
"Authorization": f"Bearer {HF_KEY}",
|
| 100 |
"Content-Type": "application/json"
|
| 101 |
}
|
| 102 |
key = os.getenv('OPENAI_API_KEY')
|
| 103 |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
| 104 |
# page config and sidebar declares up front allow all other functions to see global class variables
|
| 105 |
+
# st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")
|
|
|
|
|
|
|
| 106 |
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
|
| 107 |
|
| 108 |
+
# 2. Prompt label button demo for LLM
|
| 109 |
def add_witty_humor_buttons():
|
| 110 |
with st.expander("Wit and Humor 🤣", expanded=True):
|
| 111 |
# Tip about the Dromedary family
|
|
|
|
| 151 |
if col7[0].button("More Funny Rhymes 🎙️"):
|
| 152 |
StreamLLMChatResponse(descriptions["More Funny Rhymes 🎙️"])
|
| 153 |
|
| 154 |
+
def addDocumentHTML5(result):
|
| 155 |
+
documentHTML5='''
|
| 156 |
+
<!DOCTYPE html>
|
| 157 |
+
<html>
|
| 158 |
+
<head>
|
| 159 |
+
<title>Read It Aloud</title>
|
| 160 |
+
<script type="text/javascript">
|
| 161 |
+
function readAloud() {
|
| 162 |
+
const text = document.getElementById("textArea").value;
|
| 163 |
+
const speech = new SpeechSynthesisUtterance(text);
|
| 164 |
+
window.speechSynthesis.speak(speech);
|
| 165 |
+
}
|
| 166 |
+
</script>
|
| 167 |
+
</head>
|
| 168 |
+
<body>
|
| 169 |
+
<h1>🔊 Read It Aloud</h1>
|
| 170 |
+
<textarea id="textArea" rows="10" cols="80">
|
| 171 |
+
'''
|
| 172 |
+
documentHTML5 = documentHTML5 + result
|
| 173 |
+
documentHTML5 = documentHTML5 + '''
|
| 174 |
+
</textarea>
|
| 175 |
+
<br>
|
| 176 |
+
<button onclick="readAloud()">🔊 Read Aloud</button>
|
| 177 |
+
</body>
|
| 178 |
+
</html>
|
| 179 |
+
'''
|
| 180 |
+
|
| 181 |
+
import streamlit.components.v1 as components # Import Streamlit
|
| 182 |
+
components.html(documentHTML5, width=1280, height=1024)
|
| 183 |
+
return result
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# 3. Stream Llama Response
|
| 187 |
+
# @st.cache_resource
|
| 188 |
def StreamLLMChatResponse(prompt):
|
| 189 |
|
| 190 |
try:
|
|
|
|
| 221 |
|
| 222 |
except:
|
| 223 |
st.write('Stream llm issue')
|
| 224 |
+
add_documentHTML5(result)
|
| 225 |
except:
|
| 226 |
+
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
# 4. Run query with payload
|
| 229 |
def query(payload):
|
| 230 |
response = requests.post(API_URL, headers=headers, json=payload)
|
| 231 |
st.markdown(response.json())
|
| 232 |
return response.json()
|
|
|
|
| 233 |
def get_output(prompt):
|
| 234 |
return query({"inputs": prompt})
|
| 235 |
|
| 236 |
+
# 5. Auto name generated output files from time and content
|
| 237 |
def generate_filename(prompt, file_type):
|
| 238 |
central = pytz.timezone('US/Central')
|
| 239 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
| 240 |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
| 241 |
+
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
|
| 242 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
| 243 |
|
| 244 |
+
# 6. Speech transcription via OpenAI service
|
| 245 |
def transcribe_audio(openai_key, file_path, model):
|
| 246 |
openai.api_key = openai_key
|
| 247 |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
|
|
|
|
| 265 |
st.error("Error in API call.")
|
| 266 |
return None
|
| 267 |
|
| 268 |
+
# 7. Auto stop on silence audio control for recording WAV files
|
| 269 |
def save_and_play_audio(audio_recorder):
|
| 270 |
audio_bytes = audio_recorder(key='audio_recorder')
|
| 271 |
if audio_bytes:
|
|
|
|
| 276 |
return filename
|
| 277 |
return None
|
| 278 |
|
| 279 |
+
# 8. File creator that interprets type and creates output file for text, markdown and code
|
| 280 |
def create_file(filename, prompt, response, should_save=True):
|
| 281 |
if not should_save:
|
| 282 |
return
|
| 283 |
base_filename, ext = os.path.splitext(filename)
|
| 284 |
has_python_code = bool(re.search(r"```python([\s\S]*?)```", response))
|
| 285 |
if ext in ['.txt', '.htm', '.md']:
|
| 286 |
+
with open(f"{base_filename}.md", 'w') as file:
|
| 287 |
+
content = prompt.strip() + '\r\n' + response
|
| 288 |
+
file.write(content)
|
|
|
|
| 289 |
if has_python_code:
|
| 290 |
python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
|
| 291 |
with open(f"{base_filename}-Code.py", 'w') as file:
|
| 292 |
file.write(python_code)
|
| 293 |
+
with open(f"{base_filename}.md", 'w') as file:
|
| 294 |
+
content = prompt.strip() + '\r\n' + response
|
| 295 |
+
file.write(content)
|
| 296 |
|
| 297 |
def truncate_document(document, length):
|
| 298 |
return document[:length]
|
|
|
|
| 299 |
def divide_document(document, max_length):
|
| 300 |
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
|
| 301 |
|
| 302 |
+
# 9. Sidebar with UI controls to review and re-run prompts and continue responses
|
| 303 |
+
@st.cache_resource
|
| 304 |
def get_table_download_link(file_path):
|
| 305 |
with open(file_path, 'r') as file:
|
| 306 |
+
data = file.read()
|
| 307 |
+
|
|
|
|
|
|
|
|
|
|
| 308 |
b64 = base64.b64encode(data.encode()).decode()
|
| 309 |
file_name = os.path.basename(file_path)
|
| 310 |
ext = os.path.splitext(file_name)[1] # get the file extension
|
|
|
|
| 325 |
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
|
| 326 |
return href
|
| 327 |
|
| 328 |
+
|
| 329 |
def CompressXML(xml_text):
|
| 330 |
root = ET.fromstring(xml_text)
|
| 331 |
for elem in list(root.iter()):
|
| 332 |
if isinstance(elem.tag, str) and 'Comment' in elem.tag:
|
| 333 |
elem.parent.remove(elem)
|
| 334 |
return ET.tostring(root, encoding='unicode', method="xml")
|
| 335 |
+
|
| 336 |
+
# 10. Read in and provide UI for past files
|
| 337 |
+
@st.cache_resource
|
| 338 |
def read_file_content(file,max_length):
|
| 339 |
if file.type == "application/json":
|
| 340 |
content = json.load(file)
|
|
|
|
| 356 |
else:
|
| 357 |
return ""
|
| 358 |
|
| 359 |
+
# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
|
| 360 |
+
@st.cache_resource
|
| 361 |
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
| 362 |
model = model_choice
|
| 363 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
|
|
|
| 386 |
st.write(time.time() - start_time)
|
| 387 |
return full_reply_content
|
| 388 |
|
| 389 |
+
# 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain
|
| 390 |
+
@st.cache_resource
|
| 391 |
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
|
| 392 |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
|
| 393 |
conversation.append({'role': 'user', 'content': prompt})
|
|
|
|
| 419 |
else:
|
| 420 |
raise ValueError(f"Unable to extract file extension from {file_name}")
|
| 421 |
|
| 422 |
+
# Normalize input as text from PDF and other formats
|
| 423 |
+
@st.cache_resource
|
| 424 |
def pdf2txt(docs):
|
| 425 |
text = ""
|
| 426 |
for file in docs:
|
| 427 |
file_extension = extract_file_extension(file)
|
| 428 |
st.write(f"File type extension: {file_extension}")
|
| 429 |
+
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
|
| 430 |
+
text += file.getvalue().decode('utf-8')
|
| 431 |
+
elif file_extension.lower() == 'pdf':
|
| 432 |
+
from PyPDF2 import PdfReader
|
| 433 |
+
pdf = PdfReader(BytesIO(file.getvalue()))
|
| 434 |
+
for page in range(len(pdf.pages)):
|
| 435 |
+
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
|
|
|
|
|
|
|
|
|
|
| 436 |
return text
|
| 437 |
|
| 438 |
def txt2chunks(text):
|
| 439 |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
|
| 440 |
return text_splitter.split_text(text)
|
| 441 |
|
| 442 |
+
# Vector Store using FAISS
|
| 443 |
+
@st.cache_resource
|
| 444 |
def vector_store(text_chunks):
|
| 445 |
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
| 446 |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
| 447 |
|
| 448 |
+
# Memory and Retrieval chains
|
| 449 |
+
@st.cache_resource
|
| 450 |
def get_chain(vectorstore):
|
| 451 |
llm = ChatOpenAI()
|
| 452 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
|
|
|
| 479 |
chunks.append(' '.join(current_chunk))
|
| 480 |
return chunks
|
| 481 |
|
| 482 |
+
|
| 483 |
+
# 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it
|
| 484 |
+
|
| 485 |
+
@st.cache_resource
|
| 486 |
def create_zip_of_files(files):
|
| 487 |
zip_name = "all_files.zip"
|
| 488 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
| 489 |
for file in files:
|
| 490 |
zipf.write(file)
|
| 491 |
return zip_name
|
| 492 |
+
|
| 493 |
+
@st.cache_resource
|
| 494 |
def get_zip_download_link(zip_file):
|
| 495 |
with open(zip_file, 'rb') as f:
|
| 496 |
data = f.read()
|
|
|
|
| 498 |
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
| 499 |
return href
|
| 500 |
|
| 501 |
+
# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
|
| 502 |
+
# My Inference Endpoint
|
| 503 |
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
|
| 504 |
+
# Original
|
| 505 |
+
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
|
| 506 |
+
MODEL2 = "openai/whisper-small.en"
|
| 507 |
+
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
|
| 508 |
+
#headers = {
|
| 509 |
+
# "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
|
| 510 |
+
# "Content-Type": "audio/wav"
|
| 511 |
+
#}
|
| 512 |
+
HF_KEY = os.getenv('HF_KEY')
|
| 513 |
headers = {
|
| 514 |
+
"Authorization": f"Bearer {HF_KEY}",
|
| 515 |
+
"Content-Type": "audio/wav"
|
| 516 |
}
|
| 517 |
|
| 518 |
+
#@st.cache_resource
|
| 519 |
def query(filename):
|
| 520 |
with open(filename, "rb") as f:
|
| 521 |
data = f.read()
|
|
|
|
| 529 |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
| 530 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
| 531 |
|
| 532 |
+
# 15. Audio recorder to Wav file
|
| 533 |
def save_and_play_audio(audio_recorder):
|
| 534 |
audio_bytes = audio_recorder()
|
| 535 |
if audio_bytes:
|
|
|
|
| 539 |
st.audio(audio_bytes, format="audio/wav")
|
| 540 |
return filename
|
| 541 |
|
| 542 |
+
# 16. Speech transcription to file output
|
| 543 |
def transcribe_audio(filename):
|
| 544 |
output = query(filename)
|
| 545 |
return output
|
|
|
|
| 552 |
filename = save_and_play_audio(audio_recorder)
|
| 553 |
if filename is not None:
|
| 554 |
transcription = transcribe_audio(filename)
|
| 555 |
+
try:
|
| 556 |
+
transcription = transcription['text']
|
| 557 |
+
except:
|
| 558 |
+
st.write('Whisper model is asleep. Starting up now on T4 GPU - please give 5 minutes then retry as it scales up from zero to activate running container(s).')
|
| 559 |
+
|
| 560 |
st.write(transcription)
|
| 561 |
response = StreamLLMChatResponse(transcription)
|
| 562 |
# st.write(response) - redundant with streaming result?
|
|
|
|
| 564 |
create_file(filename, transcription, response, should_save)
|
| 565 |
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
| 566 |
|
| 567 |
+
|
| 568 |
+
# 17. Main
|
| 569 |
def main():
|
| 570 |
|
| 571 |
st.title("AI Drome Llama")
|
|
|
|
| 584 |
openai.api_key = os.getenv('OPENAI_KEY')
|
| 585 |
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
|
| 586 |
choice = st.sidebar.selectbox("Output File Type:", menu)
|
| 587 |
+
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 588 |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
| 589 |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
| 590 |
with collength:
|
|
|
|
| 628 |
filename = generate_filename(user_prompt, choice)
|
| 629 |
create_file(filename, user_prompt, response, should_save)
|
| 630 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
| 631 |
+
|
| 632 |
+
# Compose a file sidebar of past encounters
|
| 633 |
all_files = glob.glob("*.*")
|
| 634 |
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
|
| 635 |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
|
|
|
| 665 |
if st.button("🗑", key="delete_"+file):
|
| 666 |
os.remove(file)
|
| 667 |
st.experimental_rerun()
|
| 668 |
+
|
| 669 |
+
|
| 670 |
if len(file_contents) > 0:
|
| 671 |
if next_action=='open':
|
| 672 |
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
| 673 |
+
#addDocumentHTML5(file_contents)
|
| 674 |
if next_action=='md':
|
| 675 |
st.markdown(file_contents)
|
| 676 |
+
#addDocumentHTML5(file_contents)
|
| 677 |
if next_action=='search':
|
| 678 |
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
| 679 |
st.write('Reasoning with your inputs...')
|
| 680 |
+
|
| 681 |
+
# new - llama
|
| 682 |
+
response = StreamLLMChatResponse(file_contents)
|
| 683 |
+
filename = generate_filename(user_prompt, ".md")
|
| 684 |
+
create_file(filename, file_contents, response, should_save)
|
| 685 |
+
|
| 686 |
+
#addDocumentHTML5(file_contents)
|
| 687 |
+
addDocumentHTML5(response)
|
| 688 |
+
|
| 689 |
+
# old - gpt
|
| 690 |
+
#response = chat_with_model(user_prompt, file_contents, model_choice)
|
| 691 |
+
#filename = generate_filename(file_contents, choice)
|
| 692 |
+
#create_file(filename, user_prompt, response, should_save)
|
| 693 |
+
|
| 694 |
st.experimental_rerun()
|
| 695 |
|
| 696 |
# Feedback
|
|
|
|
| 721 |
filename = generate_filename(raw, 'txt')
|
| 722 |
create_file(filename, raw, '', should_save)
|
| 723 |
|
| 724 |
+
# 18. Run AI Pipeline
|
| 725 |
if __name__ == "__main__":
|
| 726 |
whisper_main()
|
| 727 |
+
main()
|