Spaces:
Runtime error
Runtime error
| import requests | |
| import streamlit as st | |
| import os | |
| from huggingface_hub import InferenceClient | |
| API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' | |
| API_KEY = os.getenv('API_KEY') | |
| headers = { | |
| "Authorization": f"Bearer {API_KEY}", | |
| "Content-Type": "application/json" | |
| } | |
| endpoint_url = API_URL | |
| hf_token = API_KEY | |
| client = InferenceClient(endpoint_url, token=hf_token) | |
| gen_kwargs = dict( | |
| max_new_tokens=512, | |
| top_k=30, | |
| top_p=0.9, | |
| temperature=0.2, | |
| repetition_penalty=1.02, | |
| stop_sequences=["\nUser:", "<|endoftext|>", "</s>"], | |
| ) | |
| prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface." | |
| stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs) | |
| report=[] | |
| res_box = st.empty() | |
| collected_chunks=[] | |
| collected_messages=[] | |
| for r in stream: | |
| if r.token.special: | |
| continue | |
| if r.token.text in gen_kwargs["stop_sequences"]: | |
| break | |
| collected_chunks.append(r.token.text) | |
| #chunk_message = r.token.text | |
| collected_messages.append(chunk_message) | |
| try: | |
| report.append(content) | |
| if len(r.token.text) > 0: | |
| result="".join(report).strip() | |
| res_box.markdown(f'*{result}*') | |
| #full_reply = ''.join() | |
| #st.markdown(r.token.text, end = "") | |
| #st.write(r.token.text) | |
| def query(payload): | |
| response = requests.post(API_URL, headers=headers, json=payload) | |
| st.markdown(response.json()) | |
| return response.json() | |
| def get_output(prompt): | |
| return query({"inputs": prompt}) | |
| def main(): | |
| st.title("Medical Llama Test Bench with Inference Endpoints Llama 7B") | |
| example_input = st.text_input("Enter your example text:") | |
| if st.button("Summarize with Variation 1"): | |
| prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface. {example_input}" | |
| output = get_output(prompt) | |
| st.markdown(f"**Output:** {output}") | |
| if st.button("Summarize with Variation 2"): | |
| prompt = f"Provide a summary of the medical transcription. Highlight the important entities, features, and relationships to CCDA and FHIR objects. {example_input}" | |
| output = get_output(prompt) | |
| st.markdown(f"**Output:** {output}") | |
| if __name__ == "__main__": | |
| main() |