Spaces:
Running
Running
Update index.html
Browse files- index.html +1738 -19
index.html
CHANGED
|
@@ -1,19 +1,1738 @@
|
|
| 1 |
-
<!
|
| 2 |
-
<html>
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Enhanced AI Flocking Evolution Simulator</title>
|
| 7 |
+
<style>
|
| 8 |
+
body {
|
| 9 |
+
margin: 0;
|
| 10 |
+
overflow: hidden;
|
| 11 |
+
font-family: Arial, sans-serif;
|
| 12 |
+
background: #000;
|
| 13 |
+
}
|
| 14 |
+
#ui {
|
| 15 |
+
position: absolute;
|
| 16 |
+
top: 10px;
|
| 17 |
+
left: 10px;
|
| 18 |
+
color: white;
|
| 19 |
+
background-color: rgba(0,0,0,0.9);
|
| 20 |
+
padding: 15px;
|
| 21 |
+
border-radius: 8px;
|
| 22 |
+
z-index: 100;
|
| 23 |
+
font-size: 14px;
|
| 24 |
+
min-width: 200px;
|
| 25 |
+
}
|
| 26 |
+
#controls {
|
| 27 |
+
position: absolute;
|
| 28 |
+
top: 10px;
|
| 29 |
+
right: 10px;
|
| 30 |
+
color: white;
|
| 31 |
+
background-color: rgba(0,0,0,0.9);
|
| 32 |
+
padding: 15px;
|
| 33 |
+
border-radius: 8px;
|
| 34 |
+
z-index: 100;
|
| 35 |
+
}
|
| 36 |
+
button {
|
| 37 |
+
background-color: #4CAF50;
|
| 38 |
+
border: none;
|
| 39 |
+
color: white;
|
| 40 |
+
padding: 8px 16px;
|
| 41 |
+
margin: 5px;
|
| 42 |
+
cursor: pointer;
|
| 43 |
+
border-radius: 4px;
|
| 44 |
+
font-size: 12px;
|
| 45 |
+
}
|
| 46 |
+
button:hover {
|
| 47 |
+
background-color: #45a049;
|
| 48 |
+
}
|
| 49 |
+
#stats {
|
| 50 |
+
position: absolute;
|
| 51 |
+
bottom: 10px;
|
| 52 |
+
left: 10px;
|
| 53 |
+
color: white;
|
| 54 |
+
background-color: rgba(0,0,0,0.9);
|
| 55 |
+
padding: 15px;
|
| 56 |
+
border-radius: 8px;
|
| 57 |
+
z-index: 100;
|
| 58 |
+
font-size: 12px;
|
| 59 |
+
min-width: 200px;
|
| 60 |
+
}
|
| 61 |
+
#flockingStats {
|
| 62 |
+
position: absolute;
|
| 63 |
+
bottom: 10px;
|
| 64 |
+
right: 10px;
|
| 65 |
+
color: white;
|
| 66 |
+
background-color: rgba(0,0,0,0.9);
|
| 67 |
+
padding: 15px;
|
| 68 |
+
border-radius: 8px;
|
| 69 |
+
z-index: 100;
|
| 70 |
+
font-size: 12px;
|
| 71 |
+
min-width: 180px;
|
| 72 |
+
}
|
| 73 |
+
#aiStats {
|
| 74 |
+
position: absolute;
|
| 75 |
+
top: 50%;
|
| 76 |
+
right: 10px;
|
| 77 |
+
transform: translateY(-50%);
|
| 78 |
+
color: white;
|
| 79 |
+
background-color: rgba(0,0,0,0.9);
|
| 80 |
+
padding: 15px;
|
| 81 |
+
border-radius: 8px;
|
| 82 |
+
z-index: 100;
|
| 83 |
+
font-size: 12px;
|
| 84 |
+
min-width: 180px;
|
| 85 |
+
}
|
| 86 |
+
.highlight { color: #ffcc00; font-weight: bold; }
|
| 87 |
+
.success { color: #00ff00; font-weight: bold; }
|
| 88 |
+
.flocking { color: #00aaff; }
|
| 89 |
+
.solo { color: #ff8800; }
|
| 90 |
+
.leader { color: #ff00ff; font-weight: bold; }
|
| 91 |
+
.explorer { color: #00ffff; }
|
| 92 |
+
.follower { color: #88ff88; }
|
| 93 |
+
.species-0 { color: #ff6b6b; }
|
| 94 |
+
.species-1 { color: #4ecdc4; }
|
| 95 |
+
.species-2 { color: #45b7d1; }
|
| 96 |
+
.species-3 { color: #96ceb4; }
|
| 97 |
+
.species-4 { color: #ffd93d; }
|
| 98 |
+
.progress-bar {
|
| 99 |
+
width: 100%;
|
| 100 |
+
height: 10px;
|
| 101 |
+
background-color: #333;
|
| 102 |
+
border-radius: 5px;
|
| 103 |
+
overflow: hidden;
|
| 104 |
+
margin: 5px 0;
|
| 105 |
+
}
|
| 106 |
+
.progress-fill {
|
| 107 |
+
height: 100%;
|
| 108 |
+
background: linear-gradient(90deg, #ff6b6b, #4ecdc4, #45b7d1);
|
| 109 |
+
transition: width 0.3s ease;
|
| 110 |
+
}
|
| 111 |
+
</style>
|
| 112 |
+
</head>
|
| 113 |
+
<body>
|
| 114 |
+
<div id="ui">
|
| 115 |
+
<div class="highlight">Enhanced AI Evolution Simulator</div>
|
| 116 |
+
<div>Epoch: <span id="epoch">1</span></div>
|
| 117 |
+
<div>Time: <span id="epochTime">60</span>s</div>
|
| 118 |
+
<div class="progress-bar"><div class="progress-fill" id="timeProgress"></div></div>
|
| 119 |
+
<div>Population: <span id="population">100</span></div>
|
| 120 |
+
<div>Species: <span id="speciesCount">1</span></div>
|
| 121 |
+
<div>Best Fitness: <span id="bestFitness">0</span></div>
|
| 122 |
+
<div>Avg IQ: <span id="avgIQ">50</span></div>
|
| 123 |
+
<div>Innovation: <span id="innovationCount">0</span></div>
|
| 124 |
+
</div>
|
| 125 |
+
|
| 126 |
+
<div id="controls">
|
| 127 |
+
<button id="pauseBtn">Pause</button>
|
| 128 |
+
<button id="resetBtn">Reset</button>
|
| 129 |
+
<button id="speedBtn">Speed: 1x</button>
|
| 130 |
+
<button id="viewBtn">View: Follow</button>
|
| 131 |
+
<button id="flockBtn">Flocks: ON</button>
|
| 132 |
+
<button id="adaptiveBtn">Adaptive: ON</button>
|
| 133 |
+
<button id="challengeBtn">Challenge: Normal</button>
|
| 134 |
+
</div>
|
| 135 |
+
|
| 136 |
+
<div id="stats">
|
| 137 |
+
<div><span class="highlight">Top Performers:</span></div>
|
| 138 |
+
<div id="topPerformers"></div>
|
| 139 |
+
<div style="margin-top: 10px;"><span class="highlight">Generation Stats:</span></div>
|
| 140 |
+
<div>Crashes: <span id="crashCount">0</span></div>
|
| 141 |
+
<div>Total Distance: <span id="totalDistance">0</span></div>
|
| 142 |
+
<div>Exploration: <span id="explorationBonus">0</span></div>
|
| 143 |
+
<div>Cooperation: <span id="cooperationScore">0</span></div>
|
| 144 |
+
<div>Road Mastery: <span id="roadMastery">0</span>%</div>
|
| 145 |
+
</div>
|
| 146 |
+
|
| 147 |
+
<div id="flockingStats">
|
| 148 |
+
<div><span class="highlight">Flocking Dynamics:</span></div>
|
| 149 |
+
<div><span class="leader">Leaders:</span> <span id="leaderCount">0</span></div>
|
| 150 |
+
<div><span class="flocking">Followers:</span> <span id="followerCount">0</span></div>
|
| 151 |
+
<div><span class="explorer">Explorers:</span> <span id="explorerCount">0</span></div>
|
| 152 |
+
<div><span class="solo">Solo:</span> <span id="soloCount">0</span></div>
|
| 153 |
+
<div>Largest Flock: <span id="largestFlock">0</span></div>
|
| 154 |
+
<div>Avg Coordination: <span id="avgCoordination">0</span>%</div>
|
| 155 |
+
<div>Group Efficiency: <span id="groupEfficiency">0</span>%</div>
|
| 156 |
+
</div>
|
| 157 |
+
|
| 158 |
+
<div id="aiStats">
|
| 159 |
+
<div><span class="highlight">AI Intelligence:</span></div>
|
| 160 |
+
<div>Neural Complexity: <span id="neuralComplexity">100</span></div>
|
| 161 |
+
<div>Decision Quality: <span id="decisionQuality">50</span>%</div>
|
| 162 |
+
<div>Learning Rate: <span id="learningRate">1.0</span></div>
|
| 163 |
+
<div>Memory Usage: <span id="memoryUsage">0</span>%</div>
|
| 164 |
+
<div style="margin-top: 10px;"><span class="highlight">Behaviors:</span></div>
|
| 165 |
+
<div>Predictive: <span id="predictiveBehavior">0</span>%</div>
|
| 166 |
+
<div>Adaptive: <span id="adaptiveBehavior">0</span>%</div>
|
| 167 |
+
<div>Emergent: <span id="emergentBehavior">0</span>%</div>
|
| 168 |
+
</div>
|
| 169 |
+
|
| 170 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r128/three.min.js"></script>
|
| 171 |
+
<script>
|
| 172 |
+
// Global variables
|
| 173 |
+
let scene, camera, renderer, clock;
|
| 174 |
+
let world = {
|
| 175 |
+
roads: [],
|
| 176 |
+
intersections: [],
|
| 177 |
+
buildings: [],
|
| 178 |
+
jumpRamps: [],
|
| 179 |
+
flockLines: [],
|
| 180 |
+
dynamicObstacles: [],
|
| 181 |
+
targets: []
|
| 182 |
+
};
|
| 183 |
+
|
| 184 |
+
// Enhanced evolution system
|
| 185 |
+
let epoch = 1;
|
| 186 |
+
let epochTime = 60;
|
| 187 |
+
let timeLeft = 60;
|
| 188 |
+
let population = [];
|
| 189 |
+
let species = [];
|
| 190 |
+
let populationSize = 100;
|
| 191 |
+
let bestFitness = 0;
|
| 192 |
+
let totalDistance = 0;
|
| 193 |
+
let groupDistance = 0;
|
| 194 |
+
let crashCount = 0;
|
| 195 |
+
let paused = false;
|
| 196 |
+
let speedMultiplier = 1;
|
| 197 |
+
let cameraMode = 'follow';
|
| 198 |
+
let showFlockLines = true;
|
| 199 |
+
let adaptiveEnvironment = true;
|
| 200 |
+
let challengeLevel = 'normal'; // normal, hard, extreme
|
| 201 |
+
let innovationCounter = 0;
|
| 202 |
+
let globalMemory = new Map();
|
| 203 |
+
|
| 204 |
+
// Enhanced AI parameters
|
| 205 |
+
const NEIGHBOR_RADIUS = 30;
|
| 206 |
+
const SEPARATION_RADIUS = 10;
|
| 207 |
+
const LEADERSHIP_RADIUS = 40;
|
| 208 |
+
const MEMORY_SIZE = 10;
|
| 209 |
+
const SPECIES_THRESHOLD = 3.0;
|
| 210 |
+
const TARGET_SPECIES = 5;
|
| 211 |
+
|
| 212 |
+
// Dynamic challenge system
|
| 213 |
+
let dynamicChallenges = {
|
| 214 |
+
obstacles: [],
|
| 215 |
+
targets: [],
|
| 216 |
+
weather: 'clear',
|
| 217 |
+
timeOfDay: 'day'
|
| 218 |
+
};
|
| 219 |
+
|
| 220 |
+
// Enhanced Neural Network with memory and multiple layers
|
| 221 |
+
class EnhancedNeuralNetwork {
|
| 222 |
+
constructor() {
|
| 223 |
+
this.inputSize = 24; // Expanded sensory inputs
|
| 224 |
+
this.hiddenLayers = [32, 24, 16]; // Multi-layer deep network
|
| 225 |
+
this.outputSize = 8; // More nuanced outputs
|
| 226 |
+
this.memorySize = MEMORY_SIZE;
|
| 227 |
+
|
| 228 |
+
// Initialize all weight matrices and biases
|
| 229 |
+
this.weights = [];
|
| 230 |
+
this.biases = [];
|
| 231 |
+
this.memory = new Array(this.memorySize).fill(0);
|
| 232 |
+
this.memoryPointer = 0;
|
| 233 |
+
|
| 234 |
+
// Build network layers
|
| 235 |
+
let prevSize = this.inputSize + this.memorySize;
|
| 236 |
+
for (let i = 0; i < this.hiddenLayers.length; i++) {
|
| 237 |
+
this.weights.push(this.randomMatrix(prevSize, this.hiddenLayers[i]));
|
| 238 |
+
this.biases.push(this.randomArray(this.hiddenLayers[i]));
|
| 239 |
+
prevSize = this.hiddenLayers[i];
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
// Output layer
|
| 243 |
+
this.weights.push(this.randomMatrix(prevSize, this.outputSize));
|
| 244 |
+
this.biases.push(this.randomArray(this.outputSize));
|
| 245 |
+
|
| 246 |
+
// Specialized modules
|
| 247 |
+
this.attentionWeights = this.randomArray(this.inputSize);
|
| 248 |
+
this.innovationGenes = this.randomArray(10);
|
| 249 |
+
this.personalityTraits = {
|
| 250 |
+
leadership: Math.random(),
|
| 251 |
+
exploration: Math.random(),
|
| 252 |
+
cooperation: Math.random(),
|
| 253 |
+
caution: Math.random(),
|
| 254 |
+
adaptability: Math.random()
|
| 255 |
+
};
|
| 256 |
+
}
|
| 257 |
+
|
| 258 |
+
randomMatrix(rows, cols) {
|
| 259 |
+
let matrix = [];
|
| 260 |
+
for (let i = 0; i < rows; i++) {
|
| 261 |
+
matrix[i] = [];
|
| 262 |
+
for (let j = 0; j < cols; j++) {
|
| 263 |
+
matrix[i][j] = (Math.random() - 0.5) * 2;
|
| 264 |
+
}
|
| 265 |
+
}
|
| 266 |
+
return matrix;
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
randomArray(size) {
|
| 270 |
+
return Array(size).fill().map(() => (Math.random() - 0.5) * 2);
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
// Advanced activation with attention mechanism
|
| 274 |
+
activate(inputs) {
|
| 275 |
+
// Apply attention mechanism to inputs
|
| 276 |
+
const attentionScores = inputs.map((input, i) =>
|
| 277 |
+
input * this.sigmoid(this.attentionWeights[i])
|
| 278 |
+
);
|
| 279 |
+
|
| 280 |
+
// Combine inputs with memory
|
| 281 |
+
let currentInput = [...attentionScores, ...this.memory];
|
| 282 |
+
|
| 283 |
+
// Forward pass through hidden layers
|
| 284 |
+
for (let layer = 0; layer < this.hiddenLayers.length; layer++) {
|
| 285 |
+
currentInput = this.forwardLayer(currentInput, this.weights[layer], this.biases[layer]);
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
// Output layer
|
| 289 |
+
const outputs = this.forwardLayer(currentInput,
|
| 290 |
+
this.weights[this.weights.length - 1],
|
| 291 |
+
this.biases[this.biases.length - 1]);
|
| 292 |
+
|
| 293 |
+
// Update memory with current state
|
| 294 |
+
this.updateMemory(inputs, outputs);
|
| 295 |
+
|
| 296 |
+
return outputs;
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
forwardLayer(inputs, weights, biases) {
|
| 300 |
+
const outputs = new Array(weights[0].length).fill(0);
|
| 301 |
+
|
| 302 |
+
for (let i = 0; i < outputs.length; i++) {
|
| 303 |
+
for (let j = 0; j < inputs.length; j++) {
|
| 304 |
+
outputs[i] += inputs[j] * weights[j][i];
|
| 305 |
+
}
|
| 306 |
+
outputs[i] += biases[i];
|
| 307 |
+
outputs[i] = this.advancedActivation(outputs[i]);
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
return outputs;
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
// Advanced activation function combining sigmoid and tanh
|
| 314 |
+
advancedActivation(x) {
|
| 315 |
+
const clampedX = Math.max(-10, Math.min(10, x));
|
| 316 |
+
return (this.sigmoid(clampedX) + Math.tanh(clampedX)) / 2;
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
sigmoid(x) {
|
| 320 |
+
return 1 / (1 + Math.exp(-Math.max(-500, Math.min(500, x))));
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
updateMemory(inputs, outputs) {
|
| 324 |
+
// Store important environmental information
|
| 325 |
+
const importance = Math.max(...inputs.slice(0, 8)); // Obstacle sensor max
|
| 326 |
+
this.memory[this.memoryPointer] = importance;
|
| 327 |
+
this.memoryPointer = (this.memoryPointer + 1) % this.memorySize;
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
// Advanced mutation with adaptive rates
|
| 331 |
+
mutate(baseRate = 0.1, innovation = false) {
|
| 332 |
+
const adaptiveRate = baseRate * (1 + this.personalityTraits.adaptability);
|
| 333 |
+
|
| 334 |
+
// Mutate weights
|
| 335 |
+
this.weights.forEach(weightMatrix => {
|
| 336 |
+
this.mutateMatrix(weightMatrix, adaptiveRate);
|
| 337 |
+
});
|
| 338 |
+
|
| 339 |
+
// Mutate biases
|
| 340 |
+
this.biases.forEach(biasArray => {
|
| 341 |
+
this.mutateArray(biasArray, adaptiveRate);
|
| 342 |
+
});
|
| 343 |
+
|
| 344 |
+
// Mutate attention weights
|
| 345 |
+
this.mutateArray(this.attentionWeights, adaptiveRate * 0.5);
|
| 346 |
+
|
| 347 |
+
// Mutate personality traits
|
| 348 |
+
Object.keys(this.personalityTraits).forEach(trait => {
|
| 349 |
+
if (Math.random() < adaptiveRate) {
|
| 350 |
+
this.personalityTraits[trait] += (Math.random() - 0.5) * 0.2;
|
| 351 |
+
this.personalityTraits[trait] = Math.max(0, Math.min(1, this.personalityTraits[trait]));
|
| 352 |
+
}
|
| 353 |
+
});
|
| 354 |
+
|
| 355 |
+
// Innovation mutations
|
| 356 |
+
if (innovation) {
|
| 357 |
+
this.mutateArray(this.innovationGenes, adaptiveRate * 2);
|
| 358 |
+
innovationCounter++;
|
| 359 |
+
}
|
| 360 |
+
}
|
| 361 |
+
|
| 362 |
+
mutateMatrix(matrix, rate) {
|
| 363 |
+
for (let i = 0; i < matrix.length; i++) {
|
| 364 |
+
for (let j = 0; j < matrix[i].length; j++) {
|
| 365 |
+
if (Math.random() < rate) {
|
| 366 |
+
const mutationStrength = 0.5 * (1 + Math.random());
|
| 367 |
+
matrix[i][j] += (Math.random() - 0.5) * mutationStrength;
|
| 368 |
+
matrix[i][j] = Math.max(-5, Math.min(5, matrix[i][j])); // Clamp weights
|
| 369 |
+
}
|
| 370 |
+
}
|
| 371 |
+
}
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
mutateArray(array, rate) {
|
| 375 |
+
for (let i = 0; i < array.length; i++) {
|
| 376 |
+
if (Math.random() < rate) {
|
| 377 |
+
const mutationStrength = 0.5 * (1 + Math.random());
|
| 378 |
+
array[i] += (Math.random() - 0.5) * mutationStrength;
|
| 379 |
+
array[i] = Math.max(-5, Math.min(5, array[i])); // Clamp values
|
| 380 |
+
}
|
| 381 |
+
}
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
// Crossover with compatibility checking
|
| 385 |
+
crossover(other) {
|
| 386 |
+
const child = new EnhancedNeuralNetwork();
|
| 387 |
+
|
| 388 |
+
// Blend weights and biases
|
| 389 |
+
for (let layer = 0; layer < this.weights.length; layer++) {
|
| 390 |
+
for (let i = 0; i < this.weights[layer].length; i++) {
|
| 391 |
+
for (let j = 0; j < this.weights[layer][i].length; j++) {
|
| 392 |
+
child.weights[layer][i][j] = Math.random() < 0.5 ?
|
| 393 |
+
this.weights[layer][i][j] : other.weights[layer][i][j];
|
| 394 |
+
}
|
| 395 |
+
}
|
| 396 |
+
|
| 397 |
+
for (let i = 0; i < this.biases[layer].length; i++) {
|
| 398 |
+
child.biases[layer][i] = Math.random() < 0.5 ?
|
| 399 |
+
this.biases[layer][i] : other.biases[layer][i];
|
| 400 |
+
}
|
| 401 |
+
}
|
| 402 |
+
|
| 403 |
+
// Blend personality traits
|
| 404 |
+
Object.keys(this.personalityTraits).forEach(trait => {
|
| 405 |
+
child.personalityTraits[trait] = (this.personalityTraits[trait] + other.personalityTraits[trait]) / 2;
|
| 406 |
+
});
|
| 407 |
+
|
| 408 |
+
return child;
|
| 409 |
+
}
|
| 410 |
+
|
| 411 |
+
copy() {
|
| 412 |
+
const newNN = new EnhancedNeuralNetwork();
|
| 413 |
+
|
| 414 |
+
// Deep copy all components
|
| 415 |
+
newNN.weights = this.weights.map(matrix =>
|
| 416 |
+
matrix.map(row => [...row])
|
| 417 |
+
);
|
| 418 |
+
newNN.biases = this.biases.map(bias => [...bias]);
|
| 419 |
+
newNN.attentionWeights = [...this.attentionWeights];
|
| 420 |
+
newNN.memory = [...this.memory];
|
| 421 |
+
newNN.memoryPointer = this.memoryPointer;
|
| 422 |
+
newNN.innovationGenes = [...this.innovationGenes];
|
| 423 |
+
newNN.personalityTraits = {...this.personalityTraits};
|
| 424 |
+
|
| 425 |
+
return newNN;
|
| 426 |
+
}
|
| 427 |
+
|
| 428 |
+
// Calculate network complexity for visualization
|
| 429 |
+
getComplexity() {
|
| 430 |
+
let totalConnections = 0;
|
| 431 |
+
this.weights.forEach(matrix => {
|
| 432 |
+
totalConnections += matrix.length * matrix[0].length;
|
| 433 |
+
});
|
| 434 |
+
return totalConnections;
|
| 435 |
+
}
|
| 436 |
+
}
|
| 437 |
+
|
| 438 |
+
// Enhanced AI Car with advanced behaviors
|
| 439 |
+
class EnhancedAICar {
|
| 440 |
+
constructor(x = 0, z = 0) {
|
| 441 |
+
this.brain = new EnhancedNeuralNetwork();
|
| 442 |
+
this.mesh = this.createCarMesh();
|
| 443 |
+
this.mesh.position.set(x, 1, z);
|
| 444 |
+
|
| 445 |
+
// Enhanced movement properties
|
| 446 |
+
this.velocity = new THREE.Vector3(
|
| 447 |
+
(Math.random() - 0.5) * 10, 0, (Math.random() - 0.5) * 10
|
| 448 |
+
);
|
| 449 |
+
this.acceleration = new THREE.Vector3();
|
| 450 |
+
this.maxSpeed = 25;
|
| 451 |
+
this.minSpeed = 3;
|
| 452 |
+
this.accelerationForce = 0.6;
|
| 453 |
+
this.turnSpeed = 0.1;
|
| 454 |
+
|
| 455 |
+
// Advanced flocking and behavior
|
| 456 |
+
this.neighbors = [];
|
| 457 |
+
this.role = 'follower'; // leader, follower, explorer, scout
|
| 458 |
+
this.flockId = -1;
|
| 459 |
+
this.speciesId = 0;
|
| 460 |
+
this.leadership = this.brain.personalityTraits.leadership;
|
| 461 |
+
this.exploration = this.brain.personalityTraits.exploration;
|
| 462 |
+
this.cooperation = this.brain.personalityTraits.cooperation;
|
| 463 |
+
|
| 464 |
+
// Enhanced fitness and metrics
|
| 465 |
+
this.fitness = 0;
|
| 466 |
+
this.rawFitness = 0;
|
| 467 |
+
this.adjustedFitness = 0;
|
| 468 |
+
this.distanceTraveled = 0;
|
| 469 |
+
this.explorationBonus = 0;
|
| 470 |
+
this.cooperationScore = 0;
|
| 471 |
+
this.leadershipScore = 0;
|
| 472 |
+
this.innovationScore = 0;
|
| 473 |
+
this.decisionQuality = 50;
|
| 474 |
+
this.predictiveAccuracy = 0;
|
| 475 |
+
|
| 476 |
+
// State tracking
|
| 477 |
+
this.timeAlive = 100;
|
| 478 |
+
this.crashed = false;
|
| 479 |
+
this.lastPosition = new THREE.Vector3(x, 1, z);
|
| 480 |
+
this.visitedAreas = new Set();
|
| 481 |
+
this.decisions = [];
|
| 482 |
+
this.predictions = [];
|
| 483 |
+
|
| 484 |
+
// Enhanced sensors
|
| 485 |
+
this.sensors = Array(12).fill(0); // More sensors
|
| 486 |
+
this.environmentSensors = Array(4).fill(0);
|
| 487 |
+
this.socialSensors = Array(8).fill(0);
|
| 488 |
+
this.sensorRays = [];
|
| 489 |
+
this.flockLines = [];
|
| 490 |
+
|
| 491 |
+
this.createSensorRays();
|
| 492 |
+
this.createFlockVisualization();
|
| 493 |
+
this.initializeMovement();
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
createCarMesh() {
|
| 497 |
+
const group = new THREE.Group();
|
| 498 |
+
|
| 499 |
+
// Enhanced car body with role-based styling
|
| 500 |
+
const bodyGeometry = new THREE.BoxGeometry(1.5, 0.8, 3);
|
| 501 |
+
this.bodyMaterial = new THREE.MeshLambertMaterial({
|
| 502 |
+
color: new THREE.Color().setHSL(Math.random(), 0.8, 0.6)
|
| 503 |
+
});
|
| 504 |
+
const body = new THREE.Mesh(bodyGeometry, this.bodyMaterial);
|
| 505 |
+
body.position.y = 0.4;
|
| 506 |
+
body.castShadow = true;
|
| 507 |
+
group.add(body);
|
| 508 |
+
|
| 509 |
+
// Role indicator
|
| 510 |
+
const indicatorGeometry = new THREE.SphereGeometry(0.2, 8, 6);
|
| 511 |
+
this.roleIndicator = new THREE.Mesh(indicatorGeometry,
|
| 512 |
+
new THREE.MeshLambertMaterial({ color: 0xffffff }));
|
| 513 |
+
this.roleIndicator.position.set(0, 1.5, 0);
|
| 514 |
+
group.add(this.roleIndicator);
|
| 515 |
+
|
| 516 |
+
// Intelligence indicator (size based on neural complexity)
|
| 517 |
+
const complexity = this.brain.getComplexity();
|
| 518 |
+
const brainSize = 0.1 + (complexity / 10000) * 0.4;
|
| 519 |
+
const brainGeometry = new THREE.SphereGeometry(brainSize, 6, 4);
|
| 520 |
+
this.brainIndicator = new THREE.Mesh(brainGeometry,
|
| 521 |
+
new THREE.MeshLambertMaterial({
|
| 522 |
+
color: 0x00ffff,
|
| 523 |
+
transparent: true,
|
| 524 |
+
opacity: 0.7
|
| 525 |
+
}));
|
| 526 |
+
this.brainIndicator.position.set(0, 1.8, 0);
|
| 527 |
+
group.add(this.brainIndicator);
|
| 528 |
+
|
| 529 |
+
// Enhanced wheels with rotation
|
| 530 |
+
const wheelGeometry = new THREE.CylinderGeometry(0.3, 0.3, 0.2, 8);
|
| 531 |
+
const wheelMaterial = new THREE.MeshLambertMaterial({ color: 0x333333 });
|
| 532 |
+
|
| 533 |
+
this.wheels = [];
|
| 534 |
+
const wheelPositions = [
|
| 535 |
+
[-0.8, 0, 1.2], [0.8, 0, 1.2],
|
| 536 |
+
[-0.8, 0, -1.2], [0.8, 0, -1.2]
|
| 537 |
+
];
|
| 538 |
+
|
| 539 |
+
wheelPositions.forEach((pos, i) => {
|
| 540 |
+
const wheel = new THREE.Mesh(wheelGeometry, wheelMaterial);
|
| 541 |
+
wheel.position.set(...pos);
|
| 542 |
+
wheel.rotation.z = Math.PI / 2;
|
| 543 |
+
this.wheels.push(wheel);
|
| 544 |
+
group.add(wheel);
|
| 545 |
+
});
|
| 546 |
+
|
| 547 |
+
return group;
|
| 548 |
+
}
|
| 549 |
+
|
| 550 |
+
createSensorRays() {
|
| 551 |
+
const sensorMaterial = new THREE.LineBasicMaterial({
|
| 552 |
+
color: 0xff0000,
|
| 553 |
+
transparent: true,
|
| 554 |
+
opacity: 0.3
|
| 555 |
+
});
|
| 556 |
+
|
| 557 |
+
// 12 sensors for comprehensive environment detection
|
| 558 |
+
for (let i = 0; i < 12; i++) {
|
| 559 |
+
const geometry = new THREE.BufferGeometry().setFromPoints([
|
| 560 |
+
new THREE.Vector3(0, 0, 0),
|
| 561 |
+
new THREE.Vector3(0, 0, 8)
|
| 562 |
+
]);
|
| 563 |
+
const ray = new THREE.Line(geometry, sensorMaterial);
|
| 564 |
+
this.sensorRays.push(ray);
|
| 565 |
+
this.mesh.add(ray);
|
| 566 |
+
}
|
| 567 |
+
}
|
| 568 |
+
|
| 569 |
+
createFlockVisualization() {
|
| 570 |
+
const flockMaterial = new THREE.LineBasicMaterial({
|
| 571 |
+
color: 0x00ff00,
|
| 572 |
+
transparent: true,
|
| 573 |
+
opacity: 0.3
|
| 574 |
+
});
|
| 575 |
+
|
| 576 |
+
for (let i = 0; i < 8; i++) {
|
| 577 |
+
const geometry = new THREE.BufferGeometry().setFromPoints([
|
| 578 |
+
new THREE.Vector3(0, 2, 0),
|
| 579 |
+
new THREE.Vector3(0, 2, 0)
|
| 580 |
+
]);
|
| 581 |
+
const line = new THREE.Line(geometry, flockMaterial);
|
| 582 |
+
this.flockLines.push(line);
|
| 583 |
+
if (showFlockLines) scene.add(line);
|
| 584 |
+
}
|
| 585 |
+
}
|
| 586 |
+
|
| 587 |
+
initializeMovement() {
|
| 588 |
+
this.mesh.rotation.y = Math.random() * Math.PI * 2;
|
| 589 |
+
this.velocity.set(
|
| 590 |
+
Math.sin(this.mesh.rotation.y) * (8 + Math.random() * 7),
|
| 591 |
+
0,
|
| 592 |
+
Math.cos(this.mesh.rotation.y) * (8 + Math.random() * 7)
|
| 593 |
+
);
|
| 594 |
+
}
|
| 595 |
+
|
| 596 |
+
updateEnhancedSensors() {
|
| 597 |
+
const maxDistance = 8;
|
| 598 |
+
const raycaster = new THREE.Raycaster();
|
| 599 |
+
|
| 600 |
+
// 12-direction sensor array
|
| 601 |
+
const sensorAngles = [];
|
| 602 |
+
for (let i = 0; i < 12; i++) {
|
| 603 |
+
sensorAngles.push((i * Math.PI * 2) / 12);
|
| 604 |
+
}
|
| 605 |
+
|
| 606 |
+
sensorAngles.forEach((angle, i) => {
|
| 607 |
+
const direction = new THREE.Vector3(
|
| 608 |
+
Math.sin(angle), 0, Math.cos(angle)
|
| 609 |
+
);
|
| 610 |
+
direction.applyQuaternion(this.mesh.quaternion);
|
| 611 |
+
|
| 612 |
+
raycaster.set(this.mesh.position, direction);
|
| 613 |
+
const intersects = raycaster.intersectObjects(this.getObstacles(), true);
|
| 614 |
+
|
| 615 |
+
if (intersects.length > 0 && intersects[0].distance <= maxDistance) {
|
| 616 |
+
this.sensors[i] = 1 - (intersects[0].distance / maxDistance);
|
| 617 |
+
} else {
|
| 618 |
+
this.sensors[i] = 0;
|
| 619 |
+
}
|
| 620 |
+
|
| 621 |
+
// Update visual ray
|
| 622 |
+
const endDistance = intersects.length > 0 ?
|
| 623 |
+
Math.min(intersects[0].distance, maxDistance) : maxDistance;
|
| 624 |
+
|
| 625 |
+
const rayEnd = direction.clone().multiplyScalar(endDistance);
|
| 626 |
+
this.sensorRays[i].geometry.setFromPoints([
|
| 627 |
+
new THREE.Vector3(0, 0, 0), rayEnd
|
| 628 |
+
]);
|
| 629 |
+
});
|
| 630 |
+
|
| 631 |
+
// Environment sensors
|
| 632 |
+
this.updateEnvironmentSensors();
|
| 633 |
+
}
|
| 634 |
+
|
| 635 |
+
updateEnvironmentSensors() {
|
| 636 |
+
const pos = this.mesh.position;
|
| 637 |
+
|
| 638 |
+
// Road detection with direction
|
| 639 |
+
this.environmentSensors[0] = this.detectRoadPosition();
|
| 640 |
+
|
| 641 |
+
// Obstacle density in area
|
| 642 |
+
let nearbyObstacles = 0;
|
| 643 |
+
population.forEach(other => {
|
| 644 |
+
if (other !== this && !other.crashed) {
|
| 645 |
+
const dist = pos.distanceTo(other.mesh.position);
|
| 646 |
+
if (dist < 20) nearbyObstacles++;
|
| 647 |
+
}
|
| 648 |
+
});
|
| 649 |
+
this.environmentSensors[1] = Math.min(nearbyObstacles / 5, 1);
|
| 650 |
+
|
| 651 |
+
// Target/goal direction (if any targets exist)
|
| 652 |
+
this.environmentSensors[2] = this.getTargetDirection();
|
| 653 |
+
|
| 654 |
+
// Exploration potential
|
| 655 |
+
this.environmentSensors[3] = this.getExplorationPotential();
|
| 656 |
+
}
|
| 657 |
+
|
| 658 |
+
updateAdvancedFlocking() {
|
| 659 |
+
this.neighbors = [];
|
| 660 |
+
this.socialSensors.fill(0);
|
| 661 |
+
|
| 662 |
+
let separation = new THREE.Vector3();
|
| 663 |
+
let alignment = new THREE.Vector3();
|
| 664 |
+
let cohesion = new THREE.Vector3();
|
| 665 |
+
let leadership = new THREE.Vector3();
|
| 666 |
+
|
| 667 |
+
let neighborCount = 0;
|
| 668 |
+
let leaderInfluence = 0;
|
| 669 |
+
|
| 670 |
+
population.forEach(other => {
|
| 671 |
+
if (other !== this && !other.crashed) {
|
| 672 |
+
const distance = this.mesh.position.distanceTo(other.mesh.position);
|
| 673 |
+
|
| 674 |
+
if (distance < NEIGHBOR_RADIUS && distance > 0) {
|
| 675 |
+
this.neighbors.push(other);
|
| 676 |
+
|
| 677 |
+
// Traditional flocking forces
|
| 678 |
+
cohesion.add(other.mesh.position);
|
| 679 |
+
alignment.add(other.velocity);
|
| 680 |
+
|
| 681 |
+
// Leadership dynamics
|
| 682 |
+
if (other.role === 'leader' && distance < LEADERSHIP_RADIUS) {
|
| 683 |
+
const influence = other.leadership * (1 - distance / LEADERSHIP_RADIUS);
|
| 684 |
+
leadership.add(other.velocity.clone().multiplyScalar(influence));
|
| 685 |
+
leaderInfluence += influence;
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
+
neighborCount++;
|
| 689 |
+
}
|
| 690 |
+
|
| 691 |
+
if (distance < SEPARATION_RADIUS && distance > 0) {
|
| 692 |
+
const diff = this.mesh.position.clone().sub(other.mesh.position);
|
| 693 |
+
diff.normalize().divideScalar(distance);
|
| 694 |
+
separation.add(diff);
|
| 695 |
+
}
|
| 696 |
+
}
|
| 697 |
+
});
|
| 698 |
+
|
| 699 |
+
// Finalize flocking forces
|
| 700 |
+
if (neighborCount > 0) {
|
| 701 |
+
cohesion.divideScalar(neighborCount).sub(this.mesh.position).normalize();
|
| 702 |
+
alignment.divideScalar(neighborCount).normalize();
|
| 703 |
+
this.cooperationScore += neighborCount * 0.1;
|
| 704 |
+
}
|
| 705 |
+
|
| 706 |
+
if (leaderInfluence > 0) {
|
| 707 |
+
leadership.normalize();
|
| 708 |
+
}
|
| 709 |
+
|
| 710 |
+
// Update social sensors
|
| 711 |
+
this.socialSensors[0] = Math.min(neighborCount / 10, 1); // Neighbor density
|
| 712 |
+
this.socialSensors[1] = separation.length(); // Separation strength
|
| 713 |
+
this.socialSensors[2] = alignment.length(); // Alignment strength
|
| 714 |
+
this.socialSensors[3] = cohesion.length(); // Cohesion strength
|
| 715 |
+
this.socialSensors[4] = leadership.length(); // Leadership influence
|
| 716 |
+
this.socialSensors[5] = this.leadership; // Own leadership
|
| 717 |
+
this.socialSensors[6] = this.cooperation; // Cooperation tendency
|
| 718 |
+
this.socialSensors[7] = this.role === 'leader' ? 1 : 0; // Role indicator
|
| 719 |
+
|
| 720 |
+
// Store forces for neural network
|
| 721 |
+
this.flockingForces = { separation, alignment, cohesion, leadership };
|
| 722 |
+
|
| 723 |
+
// Update role based on behavior
|
| 724 |
+
this.updateRole();
|
| 725 |
+
}
|
| 726 |
+
|
| 727 |
+
updateRole() {
|
| 728 |
+
const neighborCount = this.neighbors.length;
|
| 729 |
+
|
| 730 |
+
if (this.leadership > 0.7 && neighborCount > 2) {
|
| 731 |
+
this.role = 'leader';
|
| 732 |
+
this.leadershipScore += 1;
|
| 733 |
+
} else if (this.exploration > 0.8 && neighborCount < 2) {
|
| 734 |
+
this.role = 'explorer';
|
| 735 |
+
this.explorationBonus += this.velocity.length() * 0.1;
|
| 736 |
+
} else if (neighborCount > 0) {
|
| 737 |
+
this.role = 'follower';
|
| 738 |
+
} else {
|
| 739 |
+
this.role = 'scout';
|
| 740 |
+
}
|
| 741 |
+
|
| 742 |
+
// Update visual indicator
|
| 743 |
+
const colors = {
|
| 744 |
+
leader: 0xff00ff,
|
| 745 |
+
explorer: 0x00ffff,
|
| 746 |
+
follower: 0x88ff88,
|
| 747 |
+
scout: 0xffff00
|
| 748 |
+
};
|
| 749 |
+
this.roleIndicator.material.color.setHex(colors[this.role]);
|
| 750 |
+
}
|
| 751 |
+
|
| 752 |
+
getEnhancedInputs() {
|
| 753 |
+
// Comprehensive input vector
|
| 754 |
+
return [
|
| 755 |
+
...this.sensors, // 12 obstacle sensors
|
| 756 |
+
...this.environmentSensors, // 4 environment sensors
|
| 757 |
+
...this.socialSensors, // 8 social sensors
|
| 758 |
+
];
|
| 759 |
+
}
|
| 760 |
+
|
| 761 |
+
makeDecision(inputs, outputs) {
|
| 762 |
+
// Enhanced decision making with prediction
|
| 763 |
+
const decision = {
|
| 764 |
+
timestamp: Date.now(),
|
| 765 |
+
inputs: [...inputs],
|
| 766 |
+
outputs: [...outputs],
|
| 767 |
+
prediction: this.makePrediction(inputs),
|
| 768 |
+
confidence: this.calculateConfidence(outputs)
|
| 769 |
+
};
|
| 770 |
+
|
| 771 |
+
this.decisions.push(decision);
|
| 772 |
+
if (this.decisions.length > 20) {
|
| 773 |
+
this.decisions.shift();
|
| 774 |
+
}
|
| 775 |
+
|
| 776 |
+
// Update decision quality based on outcomes
|
| 777 |
+
this.updateDecisionQuality();
|
| 778 |
+
|
| 779 |
+
return outputs;
|
| 780 |
+
}
|
| 781 |
+
|
| 782 |
+
makePrediction(inputs) {
|
| 783 |
+
// Simple prediction: where will I be in 5 steps?
|
| 784 |
+
const prediction = this.mesh.position.clone().add(
|
| 785 |
+
this.velocity.clone().multiplyScalar(5)
|
| 786 |
+
);
|
| 787 |
+
|
| 788 |
+
this.predictions.push({
|
| 789 |
+
timestamp: Date.now(),
|
| 790 |
+
predicted: prediction,
|
| 791 |
+
actual: null // Will be filled later
|
| 792 |
+
});
|
| 793 |
+
|
| 794 |
+
return prediction;
|
| 795 |
+
}
|
| 796 |
+
|
| 797 |
+
calculateConfidence(outputs) {
|
| 798 |
+
// Confidence based on output certainty
|
| 799 |
+
const variance = outputs.reduce((sum, val) => sum + Math.pow(val - 0.5, 2), 0);
|
| 800 |
+
return Math.min(variance * 2, 1);
|
| 801 |
+
}
|
| 802 |
+
|
| 803 |
+
updateDecisionQuality() {
|
| 804 |
+
// Evaluate prediction accuracy
|
| 805 |
+
let accuracy = 0;
|
| 806 |
+
let validPredictions = 0;
|
| 807 |
+
|
| 808 |
+
this.predictions.forEach(pred => {
|
| 809 |
+
if (pred.actual) {
|
| 810 |
+
const error = pred.predicted.distanceTo(pred.actual);
|
| 811 |
+
accuracy += Math.max(0, 1 - error / 50); // Normalize error
|
| 812 |
+
validPredictions++;
|
| 813 |
+
}
|
| 814 |
+
});
|
| 815 |
+
|
| 816 |
+
if (validPredictions > 0) {
|
| 817 |
+
this.predictiveAccuracy = accuracy / validPredictions;
|
| 818 |
+
this.decisionQuality = this.predictiveAccuracy * 100;
|
| 819 |
+
}
|
| 820 |
+
}
|
| 821 |
+
|
| 822 |
+
detectRoadPosition() {
|
| 823 |
+
const pos = this.mesh.position;
|
| 824 |
+
const roadWidth = 12;
|
| 825 |
+
const roadSpacing = 150;
|
| 826 |
+
|
| 827 |
+
const nearestHorizontalRoad = Math.round(pos.z / roadSpacing) * roadSpacing;
|
| 828 |
+
const distToHorizontalRoad = Math.abs(pos.z - nearestHorizontalRoad);
|
| 829 |
+
const onHorizontalRoad = distToHorizontalRoad <= roadWidth / 2;
|
| 830 |
+
|
| 831 |
+
const nearestVerticalRoad = Math.round(pos.x / roadSpacing) * roadSpacing;
|
| 832 |
+
const distToVerticalRoad = Math.abs(pos.x - nearestVerticalRoad);
|
| 833 |
+
const onVerticalRoad = distToVerticalRoad <= roadWidth / 2;
|
| 834 |
+
|
| 835 |
+
if (onHorizontalRoad || onVerticalRoad) {
|
| 836 |
+
return Math.max(
|
| 837 |
+
onHorizontalRoad ? 1 - (distToHorizontalRoad / (roadWidth / 2)) : 0,
|
| 838 |
+
onVerticalRoad ? 1 - (distToVerticalRoad / (roadWidth / 2)) : 0
|
| 839 |
+
);
|
| 840 |
+
}
|
| 841 |
+
|
| 842 |
+
return 0;
|
| 843 |
+
}
|
| 844 |
+
|
| 845 |
+
getTargetDirection() {
|
| 846 |
+
// Find nearest unexplored area or target
|
| 847 |
+
if (world.targets.length > 0) {
|
| 848 |
+
const nearest = world.targets.reduce((closest, target) => {
|
| 849 |
+
const dist = this.mesh.position.distanceTo(target.position);
|
| 850 |
+
return dist < closest.distance ? { target, distance: dist } : closest;
|
| 851 |
+
}, { distance: Infinity });
|
| 852 |
+
|
| 853 |
+
if (nearest.distance < 100) {
|
| 854 |
+
const direction = nearest.target.position.clone()
|
| 855 |
+
.sub(this.mesh.position).normalize();
|
| 856 |
+
return (direction.dot(this.velocity.clone().normalize()) + 1) / 2;
|
| 857 |
+
}
|
| 858 |
+
}
|
| 859 |
+
return 0.5;
|
| 860 |
+
}
|
| 861 |
+
|
| 862 |
+
getExplorationPotential() {
|
| 863 |
+
// Calculate exploration potential based on visited areas
|
| 864 |
+
const currentArea = `${Math.floor(this.mesh.position.x / 50)},${Math.floor(this.mesh.position.z / 50)}`;
|
| 865 |
+
return this.visitedAreas.has(currentArea) ? 0.2 : 0.8;
|
| 866 |
+
}
|
| 867 |
+
|
| 868 |
+
update(deltaTime) {
|
| 869 |
+
if (this.crashed) return;
|
| 870 |
+
|
| 871 |
+
this.timeAlive -= deltaTime;
|
| 872 |
+
if (this.timeAlive <= 0) {
|
| 873 |
+
this.crashed = true;
|
| 874 |
+
return;
|
| 875 |
+
}
|
| 876 |
+
|
| 877 |
+
// Update all sensors and behaviors
|
| 878 |
+
this.updateEnhancedSensors();
|
| 879 |
+
this.updateAdvancedFlocking();
|
| 880 |
+
this.updateVisuals();
|
| 881 |
+
|
| 882 |
+
// Get comprehensive neural network inputs
|
| 883 |
+
const inputs = this.getEnhancedInputs();
|
| 884 |
+
|
| 885 |
+
// Get brain decision
|
| 886 |
+
const outputs = this.brain.activate(inputs);
|
| 887 |
+
|
| 888 |
+
// Process decision with prediction
|
| 889 |
+
const processedOutputs = this.makeDecision(inputs, outputs);
|
| 890 |
+
|
| 891 |
+
// Apply enhanced movement
|
| 892 |
+
this.applyEnhancedMovement(processedOutputs, deltaTime);
|
| 893 |
+
|
| 894 |
+
// Update fitness with advanced metrics
|
| 895 |
+
this.updateAdvancedFitness(deltaTime);
|
| 896 |
+
|
| 897 |
+
// Track exploration
|
| 898 |
+
this.trackExploration();
|
| 899 |
+
|
| 900 |
+
this.lastPosition.copy(this.mesh.position);
|
| 901 |
+
this.checkCollisions();
|
| 902 |
+
this.keepInBounds();
|
| 903 |
+
}
|
| 904 |
+
|
| 905 |
+
applyEnhancedMovement(outputs, deltaTime) {
|
| 906 |
+
// Enhanced output interpretation
|
| 907 |
+
const [
|
| 908 |
+
forwardForce, turnLeft, turnRight, brake,
|
| 909 |
+
emergencyStop, boost, preciseTurn, formation
|
| 910 |
+
] = outputs;
|
| 911 |
+
|
| 912 |
+
// Turning with precision control
|
| 913 |
+
const baseTurn = (turnRight - turnLeft) * this.turnSpeed;
|
| 914 |
+
const precisionTurn = (preciseTurn - 0.5) * this.turnSpeed * 0.5;
|
| 915 |
+
const totalTurn = (baseTurn + precisionTurn) * deltaTime;
|
| 916 |
+
|
| 917 |
+
this.mesh.rotation.y += totalTurn;
|
| 918 |
+
|
| 919 |
+
// Advanced acceleration
|
| 920 |
+
const forward = new THREE.Vector3(0, 0, 1);
|
| 921 |
+
forward.applyQuaternion(this.mesh.quaternion);
|
| 922 |
+
|
| 923 |
+
let acceleration = this.accelerationForce;
|
| 924 |
+
|
| 925 |
+
// Boost behavior
|
| 926 |
+
if (boost > 0.7) {
|
| 927 |
+
acceleration *= 1.5;
|
| 928 |
+
this.maxSpeed = 30;
|
| 929 |
+
} else {
|
| 930 |
+
this.maxSpeed = 25;
|
| 931 |
+
}
|
| 932 |
+
|
| 933 |
+
// Emergency stop
|
| 934 |
+
if (emergencyStop > 0.8) {
|
| 935 |
+
this.velocity.multiplyScalar(0.8);
|
| 936 |
+
} else if (forwardForce > 0.1) {
|
| 937 |
+
this.acceleration.add(forward.multiplyScalar(acceleration * forwardForce * deltaTime));
|
| 938 |
+
}
|
| 939 |
+
|
| 940 |
+
// Braking
|
| 941 |
+
if (brake > 0.5) {
|
| 942 |
+
this.velocity.multiplyScalar(1 - brake * deltaTime * 2);
|
| 943 |
+
}
|
| 944 |
+
|
| 945 |
+
// Apply flocking forces
|
| 946 |
+
if (this.flockingForces) {
|
| 947 |
+
const flockingStrength = formation * 0.5;
|
| 948 |
+
this.acceleration.add(this.flockingForces.separation.multiplyScalar(0.3));
|
| 949 |
+
this.acceleration.add(this.flockingForces.alignment.multiplyScalar(0.2 * flockingStrength));
|
| 950 |
+
this.acceleration.add(this.flockingForces.cohesion.multiplyScalar(0.2 * flockingStrength));
|
| 951 |
+
this.acceleration.add(this.flockingForces.leadership.multiplyScalar(0.4 * (1 - this.leadership)));
|
| 952 |
+
}
|
| 953 |
+
|
| 954 |
+
// Apply acceleration and velocity
|
| 955 |
+
this.velocity.add(this.acceleration);
|
| 956 |
+
this.acceleration.multiplyScalar(0.1); // Decay acceleration
|
| 957 |
+
|
| 958 |
+
// Speed limits
|
| 959 |
+
const currentSpeed = this.velocity.length();
|
| 960 |
+
if (currentSpeed > this.maxSpeed) {
|
| 961 |
+
this.velocity.normalize().multiplyScalar(this.maxSpeed);
|
| 962 |
+
} else if (currentSpeed < this.minSpeed) {
|
| 963 |
+
this.velocity.normalize().multiplyScalar(this.minSpeed);
|
| 964 |
+
}
|
| 965 |
+
|
| 966 |
+
// Apply movement
|
| 967 |
+
this.mesh.position.add(this.velocity.clone().multiplyScalar(deltaTime));
|
| 968 |
+
|
| 969 |
+
// Wheel rotation animation
|
| 970 |
+
this.wheels.forEach(wheel => {
|
| 971 |
+
wheel.rotation.x += this.velocity.length() * deltaTime * 0.1;
|
| 972 |
+
});
|
| 973 |
+
}
|
| 974 |
+
|
| 975 |
+
updateAdvancedFitness(deltaTime) {
|
| 976 |
+
const distance = this.mesh.position.distanceTo(this.lastPosition);
|
| 977 |
+
this.distanceTraveled += distance;
|
| 978 |
+
|
| 979 |
+
// Multi-objective fitness function
|
| 980 |
+
const roadBonus = this.detectRoadPosition() * distance * 3;
|
| 981 |
+
const groupBonus = Math.min(this.neighbors.length, 8) * distance * 2;
|
| 982 |
+
const roleBonus = this.getRoleBonus() * deltaTime;
|
| 983 |
+
const innovationBonus = this.innovationScore * 0.5;
|
| 984 |
+
const efficiencyBonus = this.getEfficiencyBonus();
|
| 985 |
+
|
| 986 |
+
this.rawFitness = this.distanceTraveled +
|
| 987 |
+
roadBonus +
|
| 988 |
+
groupBonus +
|
| 989 |
+
roleBonus +
|
| 990 |
+
this.explorationBonus +
|
| 991 |
+
this.cooperationScore +
|
| 992 |
+
innovationBonus +
|
| 993 |
+
efficiencyBonus;
|
| 994 |
+
|
| 995 |
+
// Update predictions
|
| 996 |
+
this.predictions.forEach(pred => {
|
| 997 |
+
if (!pred.actual && Date.now() - pred.timestamp > 5000) {
|
| 998 |
+
pred.actual = this.mesh.position.clone();
|
| 999 |
+
}
|
| 1000 |
+
});
|
| 1001 |
+
}
|
| 1002 |
+
|
| 1003 |
+
getRoleBonus() {
|
| 1004 |
+
switch (this.role) {
|
| 1005 |
+
case 'leader': return this.leadershipScore * 0.5;
|
| 1006 |
+
case 'explorer': return this.explorationBonus * 0.3;
|
| 1007 |
+
case 'follower': return this.cooperationScore * 0.2;
|
| 1008 |
+
case 'scout': return this.distanceTraveled * 0.1;
|
| 1009 |
+
default: return 0;
|
| 1010 |
+
}
|
| 1011 |
+
}
|
| 1012 |
+
|
| 1013 |
+
getEfficiencyBonus() {
|
| 1014 |
+
// Reward efficient decision making
|
| 1015 |
+
return this.decisionQuality * 0.1 + this.predictiveAccuracy * 50;
|
| 1016 |
+
}
|
| 1017 |
+
|
| 1018 |
+
trackExploration() {
|
| 1019 |
+
const area = `${Math.floor(this.mesh.position.x / 25)},${Math.floor(this.mesh.position.z / 25)}`;
|
| 1020 |
+
if (!this.visitedAreas.has(area)) {
|
| 1021 |
+
this.visitedAreas.add(area);
|
| 1022 |
+
this.explorationBonus += 10;
|
| 1023 |
+
}
|
| 1024 |
+
}
|
| 1025 |
+
|
| 1026 |
+
updateVisuals() {
|
| 1027 |
+
// Update car color based on role and performance
|
| 1028 |
+
this.updateCarColor();
|
| 1029 |
+
this.updateFlockVisualization();
|
| 1030 |
+
|
| 1031 |
+
// Brain indicator pulsing based on activity
|
| 1032 |
+
const brainActivity = this.brain.memory.reduce((sum, val) => sum + Math.abs(val), 0);
|
| 1033 |
+
this.brainIndicator.material.opacity = 0.5 + (brainActivity * 0.1);
|
| 1034 |
+
}
|
| 1035 |
+
|
| 1036 |
+
updateCarColor() {
|
| 1037 |
+
const hue = this.speciesId * 0.2;
|
| 1038 |
+
let saturation = 0.8;
|
| 1039 |
+
let lightness = 0.6;
|
| 1040 |
+
|
| 1041 |
+
// Role-based color modifications
|
| 1042 |
+
switch (this.role) {
|
| 1043 |
+
case 'leader':
|
| 1044 |
+
saturation = 1.0;
|
| 1045 |
+
lightness = 0.7;
|
| 1046 |
+
break;
|
| 1047 |
+
case 'explorer':
|
| 1048 |
+
saturation = 0.9;
|
| 1049 |
+
lightness = 0.8;
|
| 1050 |
+
break;
|
| 1051 |
+
case 'follower':
|
| 1052 |
+
saturation = 0.7;
|
| 1053 |
+
lightness = 0.5;
|
| 1054 |
+
break;
|
| 1055 |
+
}
|
| 1056 |
+
|
| 1057 |
+
// Performance-based brightness
|
| 1058 |
+
const performanceBonus = Math.min(this.rawFitness / 1000, 0.3);
|
| 1059 |
+
lightness += performanceBonus;
|
| 1060 |
+
|
| 1061 |
+
this.bodyMaterial.color.setHSL(hue, saturation, lightness);
|
| 1062 |
+
}
|
| 1063 |
+
|
| 1064 |
+
updateFlockVisualization() {
|
| 1065 |
+
if (!showFlockLines) return;
|
| 1066 |
+
|
| 1067 |
+
const nearestNeighbors = this.neighbors
|
| 1068 |
+
.sort((a, b) => {
|
| 1069 |
+
const distA = this.mesh.position.distanceTo(a.mesh.position);
|
| 1070 |
+
const distB = this.mesh.position.distanceTo(b.mesh.position);
|
| 1071 |
+
return distA - distB;
|
| 1072 |
+
})
|
| 1073 |
+
.slice(0, 8);
|
| 1074 |
+
|
| 1075 |
+
for (let i = 0; i < this.flockLines.length; i++) {
|
| 1076 |
+
if (i < nearestNeighbors.length) {
|
| 1077 |
+
const start = this.mesh.position.clone();
|
| 1078 |
+
start.y = 2;
|
| 1079 |
+
const end = nearestNeighbors[i].mesh.position.clone();
|
| 1080 |
+
end.y = 2;
|
| 1081 |
+
|
| 1082 |
+
this.flockLines[i].geometry.setFromPoints([start, end]);
|
| 1083 |
+
this.flockLines[i].visible = true;
|
| 1084 |
+
|
| 1085 |
+
// Color based on relationship
|
| 1086 |
+
if (nearestNeighbors[i].role === 'leader') {
|
| 1087 |
+
this.flockLines[i].material.color.setHex(0xff00ff);
|
| 1088 |
+
} else {
|
| 1089 |
+
this.flockLines[i].material.color.setHex(0x00ff00);
|
| 1090 |
+
}
|
| 1091 |
+
} else {
|
| 1092 |
+
this.flockLines[i].visible = false;
|
| 1093 |
+
}
|
| 1094 |
+
}
|
| 1095 |
+
}
|
| 1096 |
+
|
| 1097 |
+
getObstacles() {
|
| 1098 |
+
let obstacles = [];
|
| 1099 |
+
population.forEach(car => {
|
| 1100 |
+
if (car !== this && !car.crashed) {
|
| 1101 |
+
obstacles.push(car.mesh);
|
| 1102 |
+
}
|
| 1103 |
+
});
|
| 1104 |
+
|
| 1105 |
+
world.buildings.forEach(building => {
|
| 1106 |
+
obstacles.push(building.mesh);
|
| 1107 |
+
});
|
| 1108 |
+
|
| 1109 |
+
world.dynamicObstacles.forEach(obstacle => {
|
| 1110 |
+
obstacles.push(obstacle.mesh);
|
| 1111 |
+
});
|
| 1112 |
+
|
| 1113 |
+
return obstacles;
|
| 1114 |
+
}
|
| 1115 |
+
|
| 1116 |
+
checkCollisions() {
|
| 1117 |
+
const carBox = new THREE.Box3().setFromObject(this.mesh);
|
| 1118 |
+
|
| 1119 |
+
// Enhanced collision detection
|
| 1120 |
+
population.forEach(otherCar => {
|
| 1121 |
+
if (otherCar !== this && !otherCar.crashed) {
|
| 1122 |
+
const otherBox = new THREE.Box3().setFromObject(otherCar.mesh);
|
| 1123 |
+
if (carBox.intersectsBox(otherBox)) {
|
| 1124 |
+
// Soft collision - reduce speed instead of crash
|
| 1125 |
+
const collisionForce = new THREE.Vector3()
|
| 1126 |
+
.subVectors(this.mesh.position, otherCar.mesh.position)
|
| 1127 |
+
.normalize()
|
| 1128 |
+
.multiplyScalar(5);
|
| 1129 |
+
|
| 1130 |
+
this.velocity.add(collisionForce);
|
| 1131 |
+
otherCar.velocity.sub(collisionForce);
|
| 1132 |
+
|
| 1133 |
+
// Small fitness penalty
|
| 1134 |
+
this.rawFitness -= 10;
|
| 1135 |
+
otherCar.rawFitness -= 10;
|
| 1136 |
+
}
|
| 1137 |
+
}
|
| 1138 |
+
});
|
| 1139 |
+
|
| 1140 |
+
// Building collisions
|
| 1141 |
+
world.buildings.forEach(building => {
|
| 1142 |
+
const buildingBox = new THREE.Box3().setFromObject(building.mesh);
|
| 1143 |
+
if (carBox.intersectsBox(buildingBox)) {
|
| 1144 |
+
this.crashed = true;
|
| 1145 |
+
crashCount++;
|
| 1146 |
+
}
|
| 1147 |
+
});
|
| 1148 |
+
}
|
| 1149 |
+
|
| 1150 |
+
keepInBounds() {
|
| 1151 |
+
const bounds = 400;
|
| 1152 |
+
if (Math.abs(this.mesh.position.x) > bounds ||
|
| 1153 |
+
Math.abs(this.mesh.position.z) > bounds) {
|
| 1154 |
+
if (Math.abs(this.mesh.position.x) > bounds) {
|
| 1155 |
+
this.mesh.position.x = Math.sign(this.mesh.position.x) * bounds;
|
| 1156 |
+
this.velocity.x *= -0.7;
|
| 1157 |
+
}
|
| 1158 |
+
if (Math.abs(this.mesh.position.z) > bounds) {
|
| 1159 |
+
this.mesh.position.z = Math.sign(this.mesh.position.z) * bounds;
|
| 1160 |
+
this.velocity.z *= -0.7;
|
| 1161 |
+
}
|
| 1162 |
+
this.rawFitness -= 5; // Boundary penalty
|
| 1163 |
+
}
|
| 1164 |
+
}
|
| 1165 |
+
|
| 1166 |
+
destroy() {
|
| 1167 |
+
this.flockLines.forEach(line => {
|
| 1168 |
+
if (line.parent) scene.remove(line);
|
| 1169 |
+
});
|
| 1170 |
+
if (this.mesh.parent) {
|
| 1171 |
+
scene.remove(this.mesh);
|
| 1172 |
+
}
|
| 1173 |
+
}
|
| 1174 |
+
}
|
| 1175 |
+
|
| 1176 |
+
// Enhanced speciation system
|
| 1177 |
+
function calculateCompatibility(brain1, brain2) {
|
| 1178 |
+
let weightDiff = 0;
|
| 1179 |
+
let totalWeights = 0;
|
| 1180 |
+
|
| 1181 |
+
// Compare all weight matrices
|
| 1182 |
+
for (let layer = 0; layer < brain1.weights.length; layer++) {
|
| 1183 |
+
for (let i = 0; i < brain1.weights[layer].length; i++) {
|
| 1184 |
+
for (let j = 0; j < brain1.weights[layer][i].length; j++) {
|
| 1185 |
+
weightDiff += Math.abs(brain1.weights[layer][i][j] - brain2.weights[layer][i][j]);
|
| 1186 |
+
totalWeights++;
|
| 1187 |
+
}
|
| 1188 |
+
}
|
| 1189 |
+
}
|
| 1190 |
+
|
| 1191 |
+
// Compare personality traits
|
| 1192 |
+
let traitDiff = 0;
|
| 1193 |
+
Object.keys(brain1.personalityTraits).forEach(trait => {
|
| 1194 |
+
traitDiff += Math.abs(brain1.personalityTraits[trait] - brain2.personalityTraits[trait]);
|
| 1195 |
+
});
|
| 1196 |
+
|
| 1197 |
+
return (weightDiff / totalWeights) + (traitDiff / 5);
|
| 1198 |
+
}
|
| 1199 |
+
|
| 1200 |
+
function speciate() {
|
| 1201 |
+
species = [];
|
| 1202 |
+
|
| 1203 |
+
population.forEach(individual => {
|
| 1204 |
+
let foundSpecies = false;
|
| 1205 |
+
|
| 1206 |
+
for (let s of species) {
|
| 1207 |
+
if (s.members.length > 0) {
|
| 1208 |
+
const representative = s.members[0];
|
| 1209 |
+
const compatibility = calculateCompatibility(individual.brain, representative.brain);
|
| 1210 |
+
|
| 1211 |
+
if (compatibility < SPECIES_THRESHOLD) {
|
| 1212 |
+
s.members.push(individual);
|
| 1213 |
+
individual.speciesId = s.id;
|
| 1214 |
+
foundSpecies = true;
|
| 1215 |
+
break;
|
| 1216 |
+
}
|
| 1217 |
+
}
|
| 1218 |
+
}
|
| 1219 |
+
|
| 1220 |
+
if (!foundSpecies) {
|
| 1221 |
+
const newSpecies = {
|
| 1222 |
+
id: species.length,
|
| 1223 |
+
members: [individual],
|
| 1224 |
+
avgFitness: 0,
|
| 1225 |
+
staleness: 0,
|
| 1226 |
+
bestFitness: 0
|
| 1227 |
+
};
|
| 1228 |
+
species.push(newSpecies);
|
| 1229 |
+
individual.speciesId = newSpecies.id;
|
| 1230 |
+
}
|
| 1231 |
+
});
|
| 1232 |
+
|
| 1233 |
+
// Calculate species fitness
|
| 1234 |
+
species.forEach(s => {
|
| 1235 |
+
if (s.members.length > 0) {
|
| 1236 |
+
s.avgFitness = s.members.reduce((sum, ind) => sum + ind.rawFitness, 0) / s.members.length;
|
| 1237 |
+
s.bestFitness = Math.max(...s.members.map(ind => ind.rawFitness));
|
| 1238 |
+
|
| 1239 |
+
// Adjust individual fitness by species size (fitness sharing)
|
| 1240 |
+
s.members.forEach(ind => {
|
| 1241 |
+
ind.adjustedFitness = ind.rawFitness / s.members.length;
|
| 1242 |
+
});
|
| 1243 |
+
}
|
| 1244 |
+
});
|
| 1245 |
+
|
| 1246 |
+
// Remove empty species
|
| 1247 |
+
species = species.filter(s => s.members.length > 0);
|
| 1248 |
+
}
|
| 1249 |
+
|
| 1250 |
+
function init() {
|
| 1251 |
+
// Enhanced scene setup
|
| 1252 |
+
scene = new THREE.Scene();
|
| 1253 |
+
scene.background = new THREE.Color(0x87CEEB);
|
| 1254 |
+
scene.fog = new THREE.Fog(0x87CEEB, 400, 1200);
|
| 1255 |
+
|
| 1256 |
+
camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 2000);
|
| 1257 |
+
camera.position.set(0, 120, 120);
|
| 1258 |
+
camera.lookAt(0, 0, 0);
|
| 1259 |
+
|
| 1260 |
+
renderer = new THREE.WebGLRenderer({ antialias: true });
|
| 1261 |
+
renderer.setSize(window.innerWidth, window.innerHeight);
|
| 1262 |
+
renderer.shadowMap.enabled = true;
|
| 1263 |
+
renderer.shadowMap.type = THREE.PCFSoftShadowMap;
|
| 1264 |
+
renderer.setClearColor(0x001122);
|
| 1265 |
+
document.body.appendChild(renderer.domElement);
|
| 1266 |
+
|
| 1267 |
+
// Enhanced lighting
|
| 1268 |
+
const ambientLight = new THREE.AmbientLight(0x404040, 0.6);
|
| 1269 |
+
scene.add(ambientLight);
|
| 1270 |
+
|
| 1271 |
+
const directionalLight = new THREE.DirectionalLight(0xffffff, 0.8);
|
| 1272 |
+
directionalLight.position.set(100, 100, 50);
|
| 1273 |
+
directionalLight.castShadow = true;
|
| 1274 |
+
directionalLight.shadow.mapSize.width = 2048;
|
| 1275 |
+
directionalLight.shadow.mapSize.height = 2048;
|
| 1276 |
+
scene.add(directionalLight);
|
| 1277 |
+
|
| 1278 |
+
// Create enhanced world
|
| 1279 |
+
createEnhancedWorld();
|
| 1280 |
+
createInitialPopulation();
|
| 1281 |
+
|
| 1282 |
+
clock = new THREE.Clock();
|
| 1283 |
+
|
| 1284 |
+
// Event listeners
|
| 1285 |
+
window.addEventListener('resize', onWindowResize);
|
| 1286 |
+
setupEventListeners();
|
| 1287 |
+
|
| 1288 |
+
animate();
|
| 1289 |
+
}
|
| 1290 |
+
|
| 1291 |
+
function createEnhancedWorld() {
|
| 1292 |
+
// Enhanced ground with texture variation
|
| 1293 |
+
const groundGeometry = new THREE.PlaneGeometry(1000, 1000);
|
| 1294 |
+
const groundMaterial = new THREE.MeshLambertMaterial({
|
| 1295 |
+
color: 0x228B22,
|
| 1296 |
+
transparent: true,
|
| 1297 |
+
opacity: 0.9
|
| 1298 |
+
});
|
| 1299 |
+
const ground = new THREE.Mesh(groundGeometry, groundMaterial);
|
| 1300 |
+
ground.rotation.x = -Math.PI / 2;
|
| 1301 |
+
ground.receiveShadow = true;
|
| 1302 |
+
scene.add(ground);
|
| 1303 |
+
|
| 1304 |
+
createRoadNetwork();
|
| 1305 |
+
createObstacles();
|
| 1306 |
+
createDynamicEnvironment();
|
| 1307 |
+
}
|
| 1308 |
+
|
| 1309 |
+
function createRoadNetwork() {
|
| 1310 |
+
const roadMaterial = new THREE.MeshLambertMaterial({ color: 0x444444 });
|
| 1311 |
+
|
| 1312 |
+
for (let i = -300; i <= 300; i += 150) {
|
| 1313 |
+
// Horizontal roads
|
| 1314 |
+
const hRoadGeometry = new THREE.PlaneGeometry(600, 12);
|
| 1315 |
+
const hRoad = new THREE.Mesh(hRoadGeometry, roadMaterial);
|
| 1316 |
+
hRoad.rotation.x = -Math.PI / 2;
|
| 1317 |
+
hRoad.position.set(0, 0.1, i);
|
| 1318 |
+
scene.add(hRoad);
|
| 1319 |
+
|
| 1320 |
+
// Vertical roads
|
| 1321 |
+
const vRoadGeometry = new THREE.PlaneGeometry(12, 600);
|
| 1322 |
+
const vRoad = new THREE.Mesh(vRoadGeometry, roadMaterial);
|
| 1323 |
+
vRoad.rotation.x = -Math.PI / 2;
|
| 1324 |
+
vRoad.position.set(i, 0.1, 0);
|
| 1325 |
+
scene.add(vRoad);
|
| 1326 |
+
}
|
| 1327 |
+
}
|
| 1328 |
+
|
| 1329 |
+
function createObstacles() {
|
| 1330 |
+
world.buildings = [];
|
| 1331 |
+
const buildingMaterial = new THREE.MeshLambertMaterial({ color: 0x666666 });
|
| 1332 |
+
|
| 1333 |
+
for (let i = 0; i < 20; i++) {
|
| 1334 |
+
const x = (Math.random() - 0.5) * 700;
|
| 1335 |
+
const z = (Math.random() - 0.5) * 700;
|
| 1336 |
+
const width = 12 + Math.random() * 25;
|
| 1337 |
+
const height = 8 + Math.random() * 35;
|
| 1338 |
+
const depth = 12 + Math.random() * 25;
|
| 1339 |
+
|
| 1340 |
+
const buildingGeometry = new THREE.BoxGeometry(width, height, depth);
|
| 1341 |
+
const building = new THREE.Mesh(buildingGeometry, buildingMaterial);
|
| 1342 |
+
building.position.set(x, height / 2, z);
|
| 1343 |
+
building.castShadow = true;
|
| 1344 |
+
scene.add(building);
|
| 1345 |
+
|
| 1346 |
+
world.buildings.push({ mesh: building });
|
| 1347 |
+
}
|
| 1348 |
+
}
|
| 1349 |
+
|
| 1350 |
+
function createDynamicEnvironment() {
|
| 1351 |
+
// Create exploration targets
|
| 1352 |
+
world.targets = [];
|
| 1353 |
+
for (let i = 0; i < 8; i++) {
|
| 1354 |
+
const target = {
|
| 1355 |
+
position: new THREE.Vector3(
|
| 1356 |
+
(Math.random() - 0.5) * 600,
|
| 1357 |
+
5,
|
| 1358 |
+
(Math.random() - 0.5) * 600
|
| 1359 |
+
),
|
| 1360 |
+
discovered: false
|
| 1361 |
+
};
|
| 1362 |
+
|
| 1363 |
+
// Visual target
|
| 1364 |
+
const targetGeometry = new THREE.SphereGeometry(3, 8, 6);
|
| 1365 |
+
const targetMaterial = new THREE.MeshLambertMaterial({
|
| 1366 |
+
color: 0x00ff00,
|
| 1367 |
+
transparent: true,
|
| 1368 |
+
opacity: 0.7
|
| 1369 |
+
});
|
| 1370 |
+
target.mesh = new THREE.Mesh(targetGeometry, targetMaterial);
|
| 1371 |
+
target.mesh.position.copy(target.position);
|
| 1372 |
+
scene.add(target.mesh);
|
| 1373 |
+
|
| 1374 |
+
world.targets.push(target);
|
| 1375 |
+
}
|
| 1376 |
+
}
|
| 1377 |
+
|
| 1378 |
+
function createInitialPopulation() {
|
| 1379 |
+
population = [];
|
| 1380 |
+
|
| 1381 |
+
for (let i = 0; i < populationSize; i++) {
|
| 1382 |
+
const angle = (i / populationSize) * Math.PI * 2;
|
| 1383 |
+
const radius = 40 + Math.random() * 60;
|
| 1384 |
+
const x = Math.cos(angle) * radius;
|
| 1385 |
+
const z = Math.sin(angle) * radius;
|
| 1386 |
+
|
| 1387 |
+
const car = new EnhancedAICar(x, z);
|
| 1388 |
+
population.push(car);
|
| 1389 |
+
scene.add(car.mesh);
|
| 1390 |
+
}
|
| 1391 |
+
|
| 1392 |
+
speciate();
|
| 1393 |
+
}
|
| 1394 |
+
|
| 1395 |
+
function evolvePopulation() {
|
| 1396 |
+
speciate();
|
| 1397 |
+
|
| 1398 |
+
// Advanced evolution with speciation
|
| 1399 |
+
const totalAdjustedFitness = population.reduce((sum, ind) => sum + ind.adjustedFitness, 0);
|
| 1400 |
+
const newPopulation = [];
|
| 1401 |
+
|
| 1402 |
+
// Determine offspring allocation per species
|
| 1403 |
+
species.forEach(s => {
|
| 1404 |
+
if (s.members.length === 0) return;
|
| 1405 |
+
|
| 1406 |
+
const speciesFitness = s.members.reduce((sum, ind) => sum + ind.adjustedFitness, 0);
|
| 1407 |
+
const offspringCount = Math.floor((speciesFitness / totalAdjustedFitness) * populationSize);
|
| 1408 |
+
|
| 1409 |
+
// Sort species members by fitness
|
| 1410 |
+
s.members.sort((a, b) => b.adjustedFitness - a.adjustedFitness);
|
| 1411 |
+
|
| 1412 |
+
// Elite selection
|
| 1413 |
+
const eliteCount = Math.max(1, Math.floor(offspringCount * 0.2));
|
| 1414 |
+
for (let i = 0; i < eliteCount && i < s.members.length; i++) {
|
| 1415 |
+
const elite = s.members[i];
|
| 1416 |
+
const angle = Math.random() * Math.PI * 2;
|
| 1417 |
+
const radius = 40 + Math.random() * 60;
|
| 1418 |
+
const newCar = new EnhancedAICar(
|
| 1419 |
+
Math.cos(angle) * radius,
|
| 1420 |
+
Math.sin(angle) * radius
|
| 1421 |
+
);
|
| 1422 |
+
newCar.brain = elite.brain.copy();
|
| 1423 |
+
newCar.speciesId = s.id;
|
| 1424 |
+
newPopulation.push(newCar);
|
| 1425 |
+
}
|
| 1426 |
+
|
| 1427 |
+
// Crossover and mutation
|
| 1428 |
+
while (newPopulation.filter(car => car.speciesId === s.id).length < offspringCount) {
|
| 1429 |
+
const parent1 = tournamentSelection(s.members);
|
| 1430 |
+
const parent2 = tournamentSelection(s.members);
|
| 1431 |
+
|
| 1432 |
+
const angle = Math.random() * Math.PI * 2;
|
| 1433 |
+
const radius = 40 + Math.random() * 60;
|
| 1434 |
+
const child = new EnhancedAICar(
|
| 1435 |
+
Math.cos(angle) * radius,
|
| 1436 |
+
Math.sin(angle) * radius
|
| 1437 |
+
);
|
| 1438 |
+
|
| 1439 |
+
if (Math.random() < 0.7) {
|
| 1440 |
+
child.brain = parent1.brain.crossover(parent2.brain);
|
| 1441 |
+
} else {
|
| 1442 |
+
child.brain = parent1.brain.copy();
|
| 1443 |
+
}
|
| 1444 |
+
|
| 1445 |
+
// Adaptive mutation
|
| 1446 |
+
const mutationRate = 0.05 + (s.staleness * 0.01);
|
| 1447 |
+
child.brain.mutate(mutationRate, Math.random() < 0.1);
|
| 1448 |
+
|
| 1449 |
+
child.speciesId = s.id;
|
| 1450 |
+
newPopulation.push(child);
|
| 1451 |
+
}
|
| 1452 |
+
});
|
| 1453 |
+
|
| 1454 |
+
// Fill any remaining slots
|
| 1455 |
+
while (newPopulation.length < populationSize) {
|
| 1456 |
+
const randomSpecies = species[Math.floor(Math.random() * species.length)];
|
| 1457 |
+
if (randomSpecies.members.length > 0) {
|
| 1458 |
+
const parent = randomSpecies.members[0];
|
| 1459 |
+
const angle = Math.random() * Math.PI * 2;
|
| 1460 |
+
const radius = 40 + Math.random() * 60;
|
| 1461 |
+
const child = new EnhancedAICar(
|
| 1462 |
+
Math.cos(angle) * radius,
|
| 1463 |
+
Math.sin(angle) * radius
|
| 1464 |
+
);
|
| 1465 |
+
child.brain = parent.brain.copy();
|
| 1466 |
+
child.brain.mutate(0.3, true); // High mutation for diversity
|
| 1467 |
+
child.speciesId = parent.speciesId;
|
| 1468 |
+
newPopulation.push(child);
|
| 1469 |
+
}
|
| 1470 |
+
}
|
| 1471 |
+
|
| 1472 |
+
// Clean up old population
|
| 1473 |
+
population.forEach(car => car.destroy());
|
| 1474 |
+
|
| 1475 |
+
// Replace population
|
| 1476 |
+
population = newPopulation;
|
| 1477 |
+
population.forEach(car => scene.add(car.mesh));
|
| 1478 |
+
|
| 1479 |
+
// Update epoch
|
| 1480 |
+
epoch++;
|
| 1481 |
+
timeLeft = epochTime;
|
| 1482 |
+
bestFitness = Math.max(bestFitness, ...population.map(car => car.rawFitness));
|
| 1483 |
+
crashCount = 0;
|
| 1484 |
+
|
| 1485 |
+
console.log(`Epoch ${epoch}: ${species.length} species, best fitness: ${bestFitness.toFixed(1)}`);
|
| 1486 |
+
}
|
| 1487 |
+
|
| 1488 |
+
function tournamentSelection(individuals, tournamentSize = 3) {
|
| 1489 |
+
let best = null;
|
| 1490 |
+
let bestFitness = -1;
|
| 1491 |
+
|
| 1492 |
+
for (let i = 0; i < tournamentSize; i++) {
|
| 1493 |
+
const candidate = individuals[Math.floor(Math.random() * individuals.length)];
|
| 1494 |
+
if (candidate.adjustedFitness > bestFitness) {
|
| 1495 |
+
best = candidate;
|
| 1496 |
+
bestFitness = candidate.adjustedFitness;
|
| 1497 |
+
}
|
| 1498 |
+
}
|
| 1499 |
+
|
| 1500 |
+
return best;
|
| 1501 |
+
}
|
| 1502 |
+
|
| 1503 |
+
function animate() {
|
| 1504 |
+
requestAnimationFrame(animate);
|
| 1505 |
+
|
| 1506 |
+
if (!paused) {
|
| 1507 |
+
const deltaTime = Math.min(clock.getDelta() * speedMultiplier, 0.1);
|
| 1508 |
+
|
| 1509 |
+
// Update timer
|
| 1510 |
+
timeLeft -= deltaTime;
|
| 1511 |
+
if (timeLeft <= 0) {
|
| 1512 |
+
evolvePopulation();
|
| 1513 |
+
}
|
| 1514 |
+
|
| 1515 |
+
// Update population
|
| 1516 |
+
updatePopulation(deltaTime);
|
| 1517 |
+
updateCamera();
|
| 1518 |
+
updateUI();
|
| 1519 |
+
updateDynamicEnvironment(deltaTime);
|
| 1520 |
+
}
|
| 1521 |
+
|
| 1522 |
+
renderer.render(scene, camera);
|
| 1523 |
+
}
|
| 1524 |
+
|
| 1525 |
+
function updatePopulation(deltaTime) {
|
| 1526 |
+
let stats = {
|
| 1527 |
+
alive: 0,
|
| 1528 |
+
leaders: 0,
|
| 1529 |
+
followers: 0,
|
| 1530 |
+
explorers: 0,
|
| 1531 |
+
scouts: 0,
|
| 1532 |
+
totalVelocity: 0,
|
| 1533 |
+
totalCooperation: 0,
|
| 1534 |
+
totalExploration: 0,
|
| 1535 |
+
totalDecisionQuality: 0,
|
| 1536 |
+
totalNeuralComplexity: 0,
|
| 1537 |
+
maxGroupSize: 0
|
| 1538 |
+
};
|
| 1539 |
+
|
| 1540 |
+
population.forEach(car => {
|
| 1541 |
+
car.update(deltaTime);
|
| 1542 |
+
|
| 1543 |
+
if (!car.crashed) {
|
| 1544 |
+
stats.alive++;
|
| 1545 |
+
stats.totalVelocity += car.velocity.length();
|
| 1546 |
+
stats.totalDecisionQuality += car.decisionQuality;
|
| 1547 |
+
stats.totalNeuralComplexity += car.brain.getComplexity();
|
| 1548 |
+
stats.maxGroupSize = Math.max(stats.maxGroupSize, car.neighbors.length + 1);
|
| 1549 |
+
|
| 1550 |
+
switch (car.role) {
|
| 1551 |
+
case 'leader': stats.leaders++; break;
|
| 1552 |
+
case 'follower': stats.followers++; break;
|
| 1553 |
+
case 'explorer': stats.explorers++; break;
|
| 1554 |
+
case 'scout': stats.scouts++; break;
|
| 1555 |
+
}
|
| 1556 |
+
|
| 1557 |
+
stats.totalCooperation += car.cooperationScore;
|
| 1558 |
+
stats.totalExploration += car.explorationBonus;
|
| 1559 |
+
}
|
| 1560 |
+
});
|
| 1561 |
+
|
| 1562 |
+
// Store stats for UI
|
| 1563 |
+
window.populationStats = stats;
|
| 1564 |
+
}
|
| 1565 |
+
|
| 1566 |
+
function updateCamera() {
|
| 1567 |
+
if (cameraMode === 'follow') {
|
| 1568 |
+
// Follow the best performing car or largest flock
|
| 1569 |
+
let target = population.reduce((best, car) => {
|
| 1570 |
+
if (car.crashed) return best;
|
| 1571 |
+
return !best || car.rawFitness > best.rawFitness ? car : best;
|
| 1572 |
+
}, null);
|
| 1573 |
+
|
| 1574 |
+
if (target) {
|
| 1575 |
+
const targetPos = target.mesh.position.clone();
|
| 1576 |
+
targetPos.y += 50;
|
| 1577 |
+
targetPos.add(target.velocity.clone().normalize().multiplyScalar(30));
|
| 1578 |
+
|
| 1579 |
+
camera.position.lerp(targetPos, 0.02);
|
| 1580 |
+
camera.lookAt(target.mesh.position);
|
| 1581 |
+
}
|
| 1582 |
+
} else {
|
| 1583 |
+
camera.position.lerp(new THREE.Vector3(0, 200, 200), 0.02);
|
| 1584 |
+
camera.lookAt(0, 0, 0);
|
| 1585 |
+
}
|
| 1586 |
+
}
|
| 1587 |
+
|
| 1588 |
+
function updateUI() {
|
| 1589 |
+
const stats = window.populationStats || {};
|
| 1590 |
+
|
| 1591 |
+
// Main UI
|
| 1592 |
+
document.getElementById('epoch').textContent = epoch;
|
| 1593 |
+
document.getElementById('epochTime').textContent = Math.ceil(timeLeft);
|
| 1594 |
+
document.getElementById('population').textContent = stats.alive || 0;
|
| 1595 |
+
document.getElementById('speciesCount').textContent = species.length;
|
| 1596 |
+
document.getElementById('bestFitness').textContent = Math.round(bestFitness);
|
| 1597 |
+
document.getElementById('innovationCount').textContent = innovationCounter;
|
| 1598 |
+
|
| 1599 |
+
// Progress bar
|
| 1600 |
+
const progress = ((epochTime - timeLeft) / epochTime) * 100;
|
| 1601 |
+
document.getElementById('timeProgress').style.width = `${progress}%`;
|
| 1602 |
+
|
| 1603 |
+
// AI Stats
|
| 1604 |
+
if (stats.alive > 0) {
|
| 1605 |
+
document.getElementById('avgIQ').textContent = Math.round(stats.totalDecisionQuality / stats.alive);
|
| 1606 |
+
document.getElementById('neuralComplexity').textContent = Math.round(stats.totalNeuralComplexity / stats.alive);
|
| 1607 |
+
document.getElementById('decisionQuality').textContent = Math.round(stats.totalDecisionQuality / stats.alive);
|
| 1608 |
+
document.getElementById('avgCoordination').textContent = Math.round((stats.totalCooperation / stats.alive) * 10);
|
| 1609 |
+
}
|
| 1610 |
+
|
| 1611 |
+
// Flocking stats
|
| 1612 |
+
document.getElementById('leaderCount').textContent = stats.leaders || 0;
|
| 1613 |
+
document.getElementById('followerCount').textContent = stats.followers || 0;
|
| 1614 |
+
document.getElementById('explorerCount').textContent = stats.explorers || 0;
|
| 1615 |
+
document.getElementById('soloCount').textContent = stats.scouts || 0;
|
| 1616 |
+
document.getElementById('largestFlock').textContent = stats.maxGroupSize || 0;
|
| 1617 |
+
|
| 1618 |
+
// Generation stats
|
| 1619 |
+
const totalDistance = population.reduce((sum, car) => sum + car.distanceTraveled, 0);
|
| 1620 |
+
const totalExploration = population.reduce((sum, car) => sum + car.explorationBonus, 0);
|
| 1621 |
+
const totalCooperation = population.reduce((sum, car) => sum + car.cooperationScore, 0);
|
| 1622 |
+
|
| 1623 |
+
document.getElementById('totalDistance').textContent = Math.round(totalDistance);
|
| 1624 |
+
document.getElementById('explorationBonus').textContent = Math.round(totalExploration);
|
| 1625 |
+
document.getElementById('cooperationScore').textContent = Math.round(totalCooperation);
|
| 1626 |
+
document.getElementById('crashCount').textContent = crashCount;
|
| 1627 |
+
|
| 1628 |
+
// Top performers
|
| 1629 |
+
updateTopPerformers();
|
| 1630 |
+
}
|
| 1631 |
+
|
| 1632 |
+
function updateTopPerformers() {
|
| 1633 |
+
const sorted = [...population]
|
| 1634 |
+
.filter(car => !car.crashed)
|
| 1635 |
+
.sort((a, b) => b.rawFitness - a.rawFitness)
|
| 1636 |
+
.slice(0, 5);
|
| 1637 |
+
|
| 1638 |
+
const topPerformersDiv = document.getElementById('topPerformers');
|
| 1639 |
+
topPerformersDiv.innerHTML = '';
|
| 1640 |
+
|
| 1641 |
+
sorted.forEach((car, i) => {
|
| 1642 |
+
const div = document.createElement('div');
|
| 1643 |
+
const roleIcon = {
|
| 1644 |
+
leader: 'π',
|
| 1645 |
+
explorer: 'π',
|
| 1646 |
+
follower: 'π€',
|
| 1647 |
+
scout: 'ποΈ'
|
| 1648 |
+
}[car.role] || 'π';
|
| 1649 |
+
|
| 1650 |
+
div.innerHTML = `${i + 1}. ${roleIcon} S${car.speciesId} | IQ:${Math.round(car.decisionQuality)} | F:${Math.round(car.rawFitness)}`;
|
| 1651 |
+
div.className = `species-${car.speciesId % 5}`;
|
| 1652 |
+
topPerformersDiv.appendChild(div);
|
| 1653 |
+
});
|
| 1654 |
+
}
|
| 1655 |
+
|
| 1656 |
+
function updateDynamicEnvironment(deltaTime) {
|
| 1657 |
+
// Update targets
|
| 1658 |
+
world.targets.forEach(target => {
|
| 1659 |
+
// Pulsing animation
|
| 1660 |
+
target.mesh.scale.setScalar(1 + Math.sin(Date.now() * 0.005) * 0.1);
|
| 1661 |
+
|
| 1662 |
+
// Check if discovered
|
| 1663 |
+
population.forEach(car => {
|
| 1664 |
+
if (!car.crashed && target.mesh.position.distanceTo(car.mesh.position) < 10) {
|
| 1665 |
+
if (!target.discovered) {
|
| 1666 |
+
target.discovered = true;
|
| 1667 |
+
car.explorationBonus += 50;
|
| 1668 |
+
target.mesh.material.color.setHex(0xffff00);
|
| 1669 |
+
}
|
| 1670 |
+
}
|
| 1671 |
+
});
|
| 1672 |
+
});
|
| 1673 |
+
}
|
| 1674 |
+
|
| 1675 |
+
function setupEventListeners() {
|
| 1676 |
+
document.getElementById('pauseBtn').addEventListener('click', togglePause);
|
| 1677 |
+
document.getElementById('resetBtn').addEventListener('click', resetSimulation);
|
| 1678 |
+
document.getElementById('speedBtn').addEventListener('click', toggleSpeed);
|
| 1679 |
+
document.getElementById('viewBtn').addEventListener('click', toggleView);
|
| 1680 |
+
document.getElementById('flockBtn').addEventListener('click', toggleFlockLines);
|
| 1681 |
+
document.getElementById('adaptiveBtn').addEventListener('click', toggleAdaptive);
|
| 1682 |
+
document.getElementById('challengeBtn').addEventListener('click', toggleChallenge);
|
| 1683 |
+
}
|
| 1684 |
+
|
| 1685 |
+
function togglePause() {
|
| 1686 |
+
paused = !paused;
|
| 1687 |
+
document.getElementById('pauseBtn').textContent = paused ? 'Resume' : 'Pause';
|
| 1688 |
+
if (!paused) clock.start();
|
| 1689 |
+
}
|
| 1690 |
+
|
| 1691 |
+
function resetSimulation() {
|
| 1692 |
+
epoch = 1;
|
| 1693 |
+
timeLeft = epochTime;
|
| 1694 |
+
bestFitness = 0;
|
| 1695 |
+
crashCount = 0;
|
| 1696 |
+
innovationCounter = 0;
|
| 1697 |
+
|
| 1698 |
+
population.forEach(car => car.destroy());
|
| 1699 |
+
createInitialPopulation();
|
| 1700 |
+
}
|
| 1701 |
+
|
| 1702 |
+
function toggleSpeed() {
|
| 1703 |
+
speedMultiplier = speedMultiplier === 1 ? 2 : speedMultiplier === 2 ? 5 : 1;
|
| 1704 |
+
document.getElementById('speedBtn').textContent = `Speed: ${speedMultiplier}x`;
|
| 1705 |
+
}
|
| 1706 |
+
|
| 1707 |
+
function toggleView() {
|
| 1708 |
+
cameraMode = cameraMode === 'follow' ? 'overview' : 'follow';
|
| 1709 |
+
document.getElementById('viewBtn').textContent = `View: ${cameraMode === 'follow' ? 'Follow' : 'Overview'}`;
|
| 1710 |
+
}
|
| 1711 |
+
|
| 1712 |
+
function toggleFlockLines() {
|
| 1713 |
+
showFlockLines = !showFlockLines;
|
| 1714 |
+
document.getElementById('flockBtn').textContent = `Flocks: ${showFlockLines ? 'ON' : 'OFF'}`;
|
| 1715 |
+
}
|
| 1716 |
+
|
| 1717 |
+
function toggleAdaptive() {
|
| 1718 |
+
adaptiveEnvironment = !adaptiveEnvironment;
|
| 1719 |
+
document.getElementById('adaptiveBtn').textContent = `Adaptive: ${adaptiveEnvironment ? 'ON' : 'OFF'}`;
|
| 1720 |
+
}
|
| 1721 |
+
|
| 1722 |
+
function toggleChallenge() {
|
| 1723 |
+
const levels = ['normal', 'hard', 'extreme'];
|
| 1724 |
+
const currentIndex = levels.indexOf(challengeLevel);
|
| 1725 |
+
challengeLevel = levels[(currentIndex + 1) % levels.length];
|
| 1726 |
+
document.getElementById('challengeBtn').textContent = `Challenge: ${challengeLevel}`;
|
| 1727 |
+
}
|
| 1728 |
+
|
| 1729 |
+
function onWindowResize() {
|
| 1730 |
+
camera.aspect = window.innerWidth / window.innerHeight;
|
| 1731 |
+
camera.updateProjectionMatrix();
|
| 1732 |
+
renderer.setSize(window.innerWidth, window.innerHeight);
|
| 1733 |
+
}
|
| 1734 |
+
|
| 1735 |
+
init();
|
| 1736 |
+
</script>
|
| 1737 |
+
</body>
|
| 1738 |
+
</html>
|