Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import anthropic | |
| import openai | |
| import base64 | |
| import cv2 | |
| import glob | |
| import json | |
| import math | |
| import os | |
| import pytz | |
| import random | |
| import re | |
| import requests | |
| import textract | |
| import time | |
| import zipfile | |
| import plotly.graph_objects as go | |
| import streamlit.components.v1 as components | |
| from datetime import datetime | |
| from audio_recorder_streamlit import audio_recorder | |
| from bs4 import BeautifulSoup | |
| from collections import defaultdict, deque, Counter | |
| from dotenv import load_dotenv | |
| from gradio_client import Client | |
| from huggingface_hub import InferenceClient | |
| from io import BytesIO | |
| from PIL import Image | |
| from PyPDF2 import PdfReader | |
| from urllib.parse import quote | |
| from xml.etree import ElementTree as ET | |
| from openai import OpenAI | |
| import extra_streamlit_components as stx | |
| from streamlit.runtime.scriptrunner import get_script_run_ctx | |
| import asyncio | |
| import edge_tts | |
| from streamlit_marquee import streamlit_marquee | |
| from typing import Tuple, Optional | |
| import pandas as pd | |
| # ───────────────────────────────────────────────────────── | |
| # 1. CORE CONFIGURATION & SETUP | |
| # ───────────────────────────────────────────────────────── | |
| st.set_page_config( | |
| page_title="🚲TalkingAIResearcher🏆", | |
| page_icon="🚲🏆", | |
| layout="wide", | |
| initial_sidebar_state="auto", | |
| menu_items={ | |
| 'Get Help': 'https://huggingface.co/awacke1', | |
| 'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
| 'About': "🚲TalkingAIResearcher🏆" | |
| } | |
| ) | |
| load_dotenv() | |
| # ▶ Available English voices for Edge TTS | |
| EDGE_TTS_VOICES = [ | |
| "en-US-AriaNeural", | |
| "en-US-GuyNeural", | |
| "en-US-JennyNeural", | |
| "en-GB-SoniaNeural", | |
| "en-GB-RyanNeural", | |
| "en-AU-NatashaNeural", | |
| "en-AU-WilliamNeural", | |
| "en-CA-ClaraNeural", | |
| "en-CA-LiamNeural" | |
| ] | |
| # ▶ Initialize Session State | |
| if 'marquee_settings' not in st.session_state: | |
| st.session_state['marquee_settings'] = { | |
| "background": "#1E1E1E", | |
| "color": "#FFFFFF", | |
| "font-size": "14px", | |
| "animationDuration": "20s", | |
| "width": "100%", | |
| "lineHeight": "35px" | |
| } | |
| if 'tts_voice' not in st.session_state: | |
| st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] | |
| if 'audio_format' not in st.session_state: | |
| st.session_state['audio_format'] = 'mp3' | |
| if 'transcript_history' not in st.session_state: | |
| st.session_state['transcript_history'] = [] | |
| if 'chat_history' not in st.session_state: | |
| st.session_state['chat_history'] = [] | |
| if 'openai_model' not in st.session_state: | |
| st.session_state['openai_model'] = "gpt-4o-2024-05-13" | |
| if 'messages' not in st.session_state: | |
| st.session_state['messages'] = [] | |
| if 'last_voice_input' not in st.session_state: | |
| st.session_state['last_voice_input'] = "" | |
| if 'editing_file' not in st.session_state: | |
| st.session_state['editing_file'] = None | |
| if 'edit_new_name' not in st.session_state: | |
| st.session_state['edit_new_name'] = "" | |
| if 'edit_new_content' not in st.session_state: | |
| st.session_state['edit_new_content'] = "" | |
| if 'viewing_prefix' not in st.session_state: | |
| st.session_state['viewing_prefix'] = None | |
| if 'should_rerun' not in st.session_state: | |
| st.session_state['should_rerun'] = False | |
| if 'old_val' not in st.session_state: | |
| st.session_state['old_val'] = None | |
| if 'last_query' not in st.session_state: | |
| st.session_state['last_query'] = "" | |
| if 'marquee_content' not in st.session_state: | |
| st.session_state['marquee_content'] = "🚀 Welcome to TalkingAIResearcher | 🤖 Your Research Assistant" | |
| # ▶ Additional keys for performance, caching, etc. | |
| if 'audio_cache' not in st.session_state: | |
| st.session_state['audio_cache'] = {} | |
| if 'download_link_cache' not in st.session_state: | |
| st.session_state['download_link_cache'] = {} | |
| if 'operation_timings' not in st.session_state: | |
| st.session_state['operation_timings'] = {} | |
| if 'performance_metrics' not in st.session_state: | |
| st.session_state['performance_metrics'] = defaultdict(list) | |
| if 'enable_audio' not in st.session_state: | |
| st.session_state['enable_audio'] = True # Turn TTS on/off | |
| # ▶ API Keys | |
| openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
| anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
| xai_key = os.getenv('xai',"") | |
| if 'OPENAI_API_KEY' in st.secrets: | |
| openai_api_key = st.secrets['OPENAI_API_KEY'] | |
| if 'ANTHROPIC_API_KEY' in st.secrets: | |
| anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
| openai.api_key = openai_api_key | |
| openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
| HF_KEY = os.getenv('HF_KEY') | |
| API_URL = os.getenv('API_URL') | |
| # ▶ Helper constants | |
| FILE_EMOJIS = { | |
| "md": "📝", | |
| "mp3": "🎵", | |
| "wav": "🔊" | |
| } | |
| # ───────────────────────────────────────────────────────── | |
| # 2. PERFORMANCE MONITORING & TIMING | |
| # ───────────────────────────────────────────────────────── | |
| class PerformanceTimer: | |
| """ | |
| ⏱️ A context manager for timing operations with automatic logging. | |
| Usage: | |
| with PerformanceTimer("my_operation"): | |
| # do something | |
| The duration is stored into `st.session_state['operation_timings']` | |
| and appended to the `performance_metrics` list. | |
| """ | |
| def __init__(self, operation_name: str): | |
| self.operation_name = operation_name | |
| self.start_time = None | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| if not exc_type: # Only log if no exception occurred | |
| duration = time.time() - self.start_time | |
| st.session_state['operation_timings'][self.operation_name] = duration | |
| st.session_state['performance_metrics'][self.operation_name].append(duration) | |
| def log_performance_metrics(): | |
| """ | |
| 📈 Display performance metrics in the sidebar, including a timing breakdown | |
| and a small bar chart of average times. | |
| """ | |
| st.sidebar.markdown("### ⏱️ Performance Metrics") | |
| metrics = st.session_state['operation_timings'] | |
| if metrics: | |
| total_time = sum(metrics.values()) | |
| st.sidebar.write(f"**Total Processing Time:** {total_time:.2f}s") | |
| # Break down each operation time | |
| for operation, duration in metrics.items(): | |
| percentage = (duration / total_time) * 100 | |
| st.sidebar.write(f"**{operation}:** {duration:.2f}s ({percentage:.1f}%)") | |
| # Show timing history chart | |
| history_data = [] | |
| for op, times in st.session_state['performance_metrics'].items(): | |
| if times: # Only if we have data | |
| avg_time = sum(times) / len(times) | |
| history_data.append({"Operation": op, "Avg Time (s)": avg_time}) | |
| if history_data: | |
| st.sidebar.markdown("### 📊 Timing History (Avg)") | |
| chart_data = pd.DataFrame(history_data) | |
| st.sidebar.bar_chart(chart_data.set_index("Operation")) | |
| # ───────────────────────────────────────────────────────── | |
| # 3. HELPER FUNCTIONS (FILENAMES, LINKS, MARQUEE, ETC.) | |
| # ───────────────────────────────────────────────────────── | |
| def get_central_time(): | |
| """🌎 Get current time in US Central timezone.""" | |
| central = pytz.timezone('US/Central') | |
| return datetime.now(central) | |
| def format_timestamp_prefix(): | |
| """📅 Generate a timestamp prefix: MM_dd_yy_hh_mm_AM/PM.""" | |
| ct = get_central_time() | |
| return ct.strftime("%m_%d_%y_%I_%M_%p") | |
| def initialize_marquee_settings(): | |
| """🌈 Initialize marquee defaults if needed.""" | |
| if 'marquee_settings' not in st.session_state: | |
| st.session_state['marquee_settings'] = { | |
| "background": "#1E1E1E", | |
| "color": "#FFFFFF", | |
| "font-size": "14px", | |
| "animationDuration": "20s", | |
| "width": "100%", | |
| "lineHeight": "35px" | |
| } | |
| def get_marquee_settings(): | |
| """🔧 Retrieve marquee settings from session.""" | |
| initialize_marquee_settings() | |
| return st.session_state['marquee_settings'] | |
| def update_marquee_settings_ui(): | |
| """🖌 Add color pickers & sliders for marquee config in the sidebar.""" | |
| st.sidebar.markdown("### 🎯 Marquee Settings") | |
| cols = st.sidebar.columns(2) | |
| with cols[0]: | |
| bg_color = st.color_picker("🎨 Background", | |
| st.session_state['marquee_settings']["background"], | |
| key="bg_color_picker") | |
| text_color = st.color_picker("✍️ Text", | |
| st.session_state['marquee_settings']["color"], | |
| key="text_color_picker") | |
| with cols[1]: | |
| font_size = st.slider("📏 Size", 10, 24, 14, key="font_size_slider") | |
| duration = st.slider("⏱️ Speed (secs)", 1, 20, 20, key="duration_slider") | |
| st.session_state['marquee_settings'].update({ | |
| "background": bg_color, | |
| "color": text_color, | |
| "font-size": f"{font_size}px", | |
| "animationDuration": f"{duration}s" | |
| }) | |
| def display_marquee(text, settings, key_suffix=""): | |
| """ | |
| 🎉 Show a marquee text with style from the marquee settings. | |
| Automatically truncates text to ~280 chars to avoid overflow. | |
| """ | |
| truncated_text = text[:280] + "..." if len(text) > 280 else text | |
| streamlit_marquee( | |
| content=truncated_text, | |
| **settings, | |
| key=f"marquee_{key_suffix}" | |
| ) | |
| st.write("") | |
| def get_high_info_terms(text: str, top_n=10) -> list: | |
| """ | |
| 📌 Extract top_n frequent words & bigrams (excluding common stopwords). | |
| Useful for generating short descriptive keywords from Q/A content. | |
| """ | |
| stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with']) | |
| words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
| bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
| combined = words + bi_grams | |
| filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2] | |
| counter = Counter(filtered) | |
| return [term for term, freq in counter.most_common(top_n)] | |
| def clean_text_for_filename(text: str) -> str: | |
| """ | |
| 🏷️ Remove special chars & short unhelpful words from text for safer filenames. | |
| Returns a lowercased, underscore-joined token string. | |
| """ | |
| text = text.lower() | |
| text = re.sub(r'[^\w\s-]', '', text) | |
| words = text.split() | |
| stop_short = set(['the', 'and', 'for', 'with', 'this', 'that', 'ai', 'library']) | |
| filtered = [w for w in words if len(w) > 3 and w not in stop_short] | |
| return '_'.join(filtered)[:200] | |
| def generate_filename(prompt, response, file_type="md", max_length=200): | |
| """ | |
| 📁 Create a shortened filename based on prompt+response content: | |
| 1) Extract top info terms, | |
| 2) Combine snippet from prompt+response, | |
| 3) Remove duplicates, | |
| 4) Truncate if needed. | |
| """ | |
| prefix = format_timestamp_prefix() + "_" | |
| combined_text = (prompt + " " + response)[:200] | |
| info_terms = get_high_info_terms(combined_text, top_n=5) | |
| snippet = (prompt[:40] + " " + response[:40]).strip() | |
| snippet_cleaned = clean_text_for_filename(snippet) | |
| # Remove duplicates | |
| name_parts = info_terms + [snippet_cleaned] | |
| seen = set() | |
| unique_parts = [] | |
| for part in name_parts: | |
| if part not in seen: | |
| seen.add(part) | |
| unique_parts.append(part) | |
| full_name = '_'.join(unique_parts).strip('_') | |
| leftover_chars = max_length - len(prefix) - len(file_type) - 1 | |
| if len(full_name) > leftover_chars: | |
| full_name = full_name[:leftover_chars] | |
| return f"{prefix}{full_name}.{file_type}" | |
| def create_file(prompt, response, file_type="md"): | |
| """ | |
| 📝 Create a text file from prompt + response with a sanitized filename. | |
| Returns the created filename. | |
| """ | |
| filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
| with open(filename, 'w', encoding='utf-8') as f: | |
| f.write(prompt + "\n\n" + response) | |
| return filename | |
| # ───────────────────────────────────────────────────────── | |
| # 4. OPTIMIZED AUDIO GENERATION (ASYNC TTS + CACHING) | |
| # ───────────────────────────────────────────────────────── | |
| def clean_for_speech(text: str) -> str: | |
| """ | |
| 🔉 Clean up text for TTS output with enhanced cleaning. | |
| Removes markdown, code blocks, links, etc. | |
| """ | |
| with PerformanceTimer("text_cleaning"): | |
| # Remove markdown headers | |
| text = re.sub(r'#+ ', '', text) | |
| # Remove link formats [text](url) | |
| text = re.sub(r'\[([^\]]+)\]\([^\)]+\)', r'\1', text) | |
| # Remove emphasis markers (*, _, ~, `) | |
| text = re.sub(r'[*_~`]', '', text) | |
| # Remove code blocks | |
| text = re.sub(r'```[\s\S]*?```', '', text) | |
| text = re.sub(r'`[^`]*`', '', text) | |
| # Remove excess whitespace | |
| text = re.sub(r'\s+', ' ', text).replace("\n", " ") | |
| # Remove hidden S tokens | |
| text = text.replace("</s>", " ") | |
| # Remove URLs | |
| text = re.sub(r'https?://\S+', '', text) | |
| text = re.sub(r'\(https?://[^\)]+\)', '', text) | |
| text = text.strip() | |
| return text | |
| async def async_edge_tts_generate( | |
| text: str, | |
| voice: str, | |
| rate: int = 0, | |
| pitch: int = 0, | |
| file_format: str = "mp3" | |
| ) -> Tuple[Optional[str], float]: | |
| """ | |
| 🎶 Asynchronous TTS generation with caching and performance tracking. | |
| Returns (filename, generation_time). | |
| """ | |
| with PerformanceTimer("tts_generation") as timer: | |
| # ▶ Clean & validate text | |
| text = clean_for_speech(text) | |
| if not text.strip(): | |
| return None, 0 | |
| # ▶ Check cache (avoid regenerating the same TTS) | |
| cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}" | |
| if cache_key in st.session_state['audio_cache']: | |
| return st.session_state['audio_cache'][cache_key], 0 | |
| try: | |
| # ▶ Generate audio | |
| rate_str = f"{rate:+d}%" | |
| pitch_str = f"{pitch:+d}Hz" | |
| communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
| # ▶ Generate unique filename | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"audio_{timestamp}_{random.randint(1000, 9999)}.{file_format}" | |
| # ▶ Save audio file | |
| await communicate.save(filename) | |
| # ▶ Store in cache | |
| st.session_state['audio_cache'][cache_key] = filename | |
| # ▶ Return path + timing | |
| return filename, time.time() - timer.start_time | |
| except Exception as e: | |
| st.error(f"❌ Error generating audio: {str(e)}") | |
| return None, 0 | |
| async def async_save_qa_with_audio( | |
| question: str, | |
| answer: str, | |
| voice: Optional[str] = None | |
| ) -> Tuple[str, Optional[str], float, float]: | |
| """ | |
| 📝 Asynchronously save Q&A to markdown, then generate audio if enabled. | |
| Returns (md_file, audio_file, md_time, audio_time). | |
| """ | |
| voice = voice or st.session_state['tts_voice'] | |
| with PerformanceTimer("qa_save") as timer: | |
| # ▶ Save Q/A as markdown | |
| md_start = time.time() | |
| md_file = create_file(question, answer, "md") | |
| md_time = time.time() - md_start | |
| # ▶ Generate audio (if globally enabled) | |
| audio_file = None | |
| audio_time = 0 | |
| if st.session_state['enable_audio']: | |
| audio_text = f"{question}\n\nAnswer: {answer}" | |
| audio_file, audio_time = await async_edge_tts_generate( | |
| audio_text, | |
| voice=voice, | |
| file_format=st.session_state['audio_format'] | |
| ) | |
| return md_file, audio_file, md_time, audio_time | |
| def create_download_link_with_cache(file_path: str, file_type: str = "mp3") -> str: | |
| """ | |
| ⬇️ Create a download link for a file with caching & error handling. | |
| """ | |
| with PerformanceTimer("download_link_generation"): | |
| cache_key = f"dl_{file_path}" | |
| if cache_key in st.session_state['download_link_cache']: | |
| return st.session_state['download_link_cache'][cache_key] | |
| try: | |
| with open(file_path, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode() | |
| filename = os.path.basename(file_path) | |
| if file_type == "mp3": | |
| link = f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">🎵 Download {filename}</a>' | |
| elif file_type == "wav": | |
| link = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">🔊 Download {filename}</a>' | |
| elif file_type == "md": | |
| link = f'<a href="data:text/markdown;base64,{b64}" download="{filename}">📝 Download {filename}</a>' | |
| else: | |
| link = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">⬇️ Download {filename}</a>' | |
| st.session_state['download_link_cache'][cache_key] = link | |
| return link | |
| except Exception as e: | |
| st.error(f"❌ Error creating download link: {str(e)}") | |
| return "" | |
| # ───────────────────────────────────────────────────────── | |
| # 5. RESEARCH / ARXIV FUNCTIONS | |
| # ───────────────────────────────────────────────────────── | |
| def parse_arxiv_refs(ref_text: str): | |
| """ | |
| 📜 Given a multi-line markdown with Arxiv references, | |
| parse them into a list of dicts: {date, title, url, authors, summary}. | |
| """ | |
| if not ref_text: | |
| return [] | |
| results = [] | |
| current_paper = {} | |
| lines = ref_text.split('\n') | |
| for i, line in enumerate(lines): | |
| if line.count('|') == 2: | |
| # Found a new paper line | |
| if current_paper: | |
| results.append(current_paper) | |
| if len(results) >= 20: | |
| break | |
| try: | |
| header_parts = line.strip('* ').split('|') | |
| date = header_parts[0].strip() | |
| title = header_parts[1].strip() | |
| url_match = re.search(r'(https://arxiv.org/\S+)', line) | |
| url = url_match.group(1) if url_match else f"paper_{len(results)}" | |
| current_paper = { | |
| 'date': date, | |
| 'title': title, | |
| 'url': url, | |
| 'authors': '', | |
| 'summary': '', | |
| 'full_audio': None, | |
| 'download_base64': '', | |
| } | |
| except Exception as e: | |
| st.warning(f"⚠️ Error parsing paper header: {str(e)}") | |
| current_paper = {} | |
| continue | |
| elif current_paper: | |
| # If authors not set, fill it; otherwise, fill summary | |
| if not current_paper['authors']: | |
| current_paper['authors'] = line.strip('* ') | |
| else: | |
| if current_paper['summary']: | |
| current_paper['summary'] += ' ' + line.strip() | |
| else: | |
| current_paper['summary'] = line.strip() | |
| if current_paper: | |
| results.append(current_paper) | |
| return results[:20] | |
| def create_paper_links_md(papers): | |
| """ | |
| 🔗 Create a minimal .md content linking to each paper's Arxiv URL. | |
| """ | |
| lines = ["# Paper Links\n"] | |
| for i, p in enumerate(papers, start=1): | |
| lines.append(f"{i}. **{p['title']}** — [Arxiv]({p['url']})") | |
| return "\n".join(lines) | |
| async def create_paper_audio_files(papers, input_question): | |
| """ | |
| 🎧 For each paper, generate TTS audio summary and store the path in `paper['full_audio']`. | |
| Also creates a base64 download link in `paper['download_base64']`. | |
| """ | |
| for paper in papers: | |
| try: | |
| audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
| audio_text = clean_for_speech(audio_text) | |
| file_format = st.session_state['audio_format'] | |
| audio_file, _ = await async_edge_tts_generate( | |
| audio_text, | |
| voice=st.session_state['tts_voice'], | |
| file_format=file_format | |
| ) | |
| paper['full_audio'] = audio_file | |
| if audio_file: | |
| # Convert to base64 link | |
| ext = file_format | |
| download_link = create_download_link_with_cache(audio_file, file_type=ext) | |
| paper['download_base64'] = download_link | |
| except Exception as e: | |
| st.warning(f"⚠️ Error processing paper {paper['title']}: {str(e)}") | |
| paper['full_audio'] = None | |
| paper['download_base64'] = '' | |
| def display_papers(papers, marquee_settings): | |
| """ | |
| 📑 Display paper info in the main area with marquee + expanders + audio. | |
| """ | |
| st.write("## 🔎 Research Papers") | |
| for i, paper in enumerate(papers, start=1): | |
| marquee_text = f"📄 {paper['title']} | 👤 {paper['authors'][:120]} | 📝 {paper['summary'][:200]}" | |
| display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}") | |
| with st.expander(f"{i}. 📄 {paper['title']}", expanded=True): | |
| st.markdown(f"**{paper['date']} | {paper['title']}** — [Arxiv Link]({paper['url']})") | |
| st.markdown(f"*Authors:* {paper['authors']}") | |
| st.markdown(paper['summary']) | |
| if paper.get('full_audio'): | |
| st.write("📚 **Paper Audio**") | |
| st.audio(paper['full_audio']) | |
| if paper['download_base64']: | |
| st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
| def display_papers_in_sidebar(papers): | |
| """ | |
| 🔎 Mirrors the paper listing in the sidebar with expanders, audio, etc. | |
| """ | |
| st.sidebar.title("🎶 Papers & Audio") | |
| for i, paper in enumerate(papers, start=1): | |
| with st.sidebar.expander(f"{i}. {paper['title']}"): | |
| st.markdown(f"**Arxiv:** [Link]({paper['url']})") | |
| if paper['full_audio']: | |
| st.audio(paper['full_audio']) | |
| if paper['download_base64']: | |
| st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
| st.markdown(f"**Authors:** {paper['authors']}") | |
| if paper['summary']: | |
| st.markdown(f"**Summary:** {paper['summary'][:300]}...") | |
| # ───────────────────────────────────────────────────────── | |
| # 6. ZIP FUNCTION | |
| # ───────────────────────────────────────────────────────── | |
| def create_zip_of_files(md_files, mp3_files, wav_files, input_question): | |
| """ | |
| 📦 Zip up all relevant files, generating a short name from high-info terms. | |
| Returns the zip filename if created, else None. | |
| """ | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files + wav_files | |
| if not all_files: | |
| return None | |
| all_content = [] | |
| for f in all_files: | |
| if f.endswith('.md'): | |
| with open(f, "r", encoding='utf-8') as file: | |
| all_content.append(file.read()) | |
| elif f.endswith('.mp3') or f.endswith('.wav'): | |
| basename = os.path.splitext(os.path.basename(f))[0] | |
| words = basename.replace('_', ' ') | |
| all_content.append(words) | |
| all_content.append(input_question) | |
| combined_content = " ".join(all_content) | |
| info_terms = get_high_info_terms(combined_content, top_n=10) | |
| timestamp = format_timestamp_prefix() | |
| name_text = '-'.join(term for term in info_terms[:5]) | |
| short_zip_name = (timestamp + "_" + name_text)[:20] + ".zip" | |
| with zipfile.ZipFile(short_zip_name, 'w') as z: | |
| for f in all_files: | |
| z.write(f) | |
| return short_zip_name | |
| # ───────────────────────────────────────────────────────── | |
| # 7. MAIN AI LOGIC: LOOKUP & TAB HANDLERS | |
| # ───────────────────────────────────────────────────────── | |
| def perform_ai_lookup( | |
| q, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=False | |
| ): | |
| """ | |
| 🔮 Main routine that uses Anthropic (Claude) + optional Gradio ArXiv RAG pipeline. | |
| Currently demonstrates calling Anthropic and returning the text. | |
| """ | |
| with PerformanceTimer("ai_lookup"): | |
| start = time.time() | |
| # ▶ Example call to Anthropic (Claude) | |
| client = anthropic.Anthropic(api_key=anthropic_key) | |
| user_input = q | |
| # Here we do a minimal prompt, just to show the call | |
| # (You can enhance your prompt engineering as needed) | |
| response = client.completions.create( | |
| model="claude-2", | |
| max_tokens_to_sample=512, | |
| prompt=f"{anthropic.HUMAN_PROMPT} {user_input}{anthropic.AI_PROMPT}" | |
| ) | |
| result_text = response.completion.strip() | |
| # ▶ Print and store | |
| st.write("### Claude's reply 🧠:") | |
| st.markdown(result_text) | |
| # ▶ We'll add to the chat history | |
| st.session_state.chat_history.append({"user": q, "claude": result_text}) | |
| # ▶ Return final text | |
| end = time.time() | |
| st.write(f"**Elapsed:** {end - start:.2f}s") | |
| return result_text | |
| async def process_voice_input(text): | |
| """ | |
| 🎤 When user sends a voice query, we run the AI lookup + Q/A with audio. | |
| Then we store the resulting markdown & audio in session or disk. | |
| """ | |
| if not text: | |
| return | |
| st.subheader("🔍 Search Results") | |
| # ▶ Call AI | |
| result = perform_ai_lookup( | |
| text, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=True | |
| ) | |
| # ▶ Save Q&A as Markdown + audio (async) | |
| md_file, audio_file, md_time, audio_time = await async_save_qa_with_audio(text, result) | |
| st.subheader("📝 Generated Files") | |
| st.write(f"**Markdown:** {md_file} (saved in {md_time:.2f}s)") | |
| if audio_file: | |
| st.write(f"**Audio:** {audio_file} (generated in {audio_time:.2f}s)") | |
| st.audio(audio_file) | |
| dl_link = create_download_link_with_cache(audio_file, file_type=st.session_state['audio_format']) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| def display_voice_tab(): | |
| """ | |
| 🎙️ Display the voice input tab with TTS settings and real-time usage. | |
| """ | |
| st.subheader("🎤 Voice Input") | |
| # ▶ Voice Settings | |
| st.markdown("### 🎤 Voice Settings") | |
| caption_female = 'Top: 🌸 **Aria** – 🎶 **Jenny** – 🌺 **Sonia** – 🌌 **Natasha** – 🌷 **Clara**' | |
| caption_male = 'Bottom: 🌟 **Guy** – 🛠️ **Ryan** – 🎻 **William** – 🌟 **Liam**' | |
| # Optionally, replace with your own local image or comment out | |
| # st.sidebar.image('Group Picture - Voices.png', caption=caption_female + ' | ' + caption_male) | |
| st.sidebar.markdown(""" | |
| # 🎙️ Voice Character Agent Selector 🎭 | |
| *Female Voices*: | |
| - 🌸 **Aria** – Elegant, creative storytelling | |
| - 🎶 **Jenny** – Friendly, conversational | |
| - 🌺 **Sonia** – Bold, confident | |
| - 🌌 **Natasha** – Sophisticated, mysterious | |
| - 🌷 **Clara** – Cheerful, empathetic | |
| *Male Voices*: | |
| - 🌟 **Guy** – Authoritative, versatile | |
| - 🛠️ **Ryan** – Approachable, casual | |
| - 🎻 **William** – Classic, scholarly | |
| - 🌟 **Liam** – Energetic, engaging | |
| """) | |
| selected_voice = st.selectbox( | |
| "👄 Select TTS Voice:", | |
| options=EDGE_TTS_VOICES, | |
| index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) | |
| ) | |
| # ▶ Audio Format | |
| st.markdown("### 🔊 Audio Format") | |
| selected_format = st.radio( | |
| "Choose Audio Format:", | |
| options=["MP3", "WAV"], | |
| index=0 | |
| ) | |
| # ▶ Update session state if changed | |
| if selected_voice != st.session_state['tts_voice']: | |
| st.session_state['tts_voice'] = selected_voice | |
| st.experimental_rerun() | |
| if selected_format.lower() != st.session_state['audio_format']: | |
| st.session_state['audio_format'] = selected_format.lower() | |
| st.experimental_rerun() | |
| # ▶ Text Input | |
| user_text = st.text_area("💬 Message:", height=100) | |
| user_text = user_text.strip().replace('\n', ' ') | |
| # ▶ Send Button | |
| if st.button("📨 Send"): | |
| # Run our process_voice_input as an async function | |
| asyncio.run(process_voice_input(user_text)) | |
| # ▶ Chat History | |
| st.subheader("📜 Chat History") | |
| for c in st.session_state.chat_history: | |
| st.write("**You:**", c["user"]) | |
| st.write("**Response:**", c["claude"]) | |
| # ───────────────────────────────────────────────────────── | |
| # FILE HISTORY SIDEBAR | |
| # ───────────────────────────────────────────────────────── | |
| def display_file_history_in_sidebar(): | |
| """ | |
| 📂 Shows a history of local .md, .mp3, .wav files (newest first), | |
| with quick icons and optional download links. | |
| """ | |
| st.sidebar.markdown("---") | |
| st.sidebar.markdown("### 📂 File History") | |
| # ▶ Gather all files | |
| md_files = glob.glob("*.md") | |
| mp3_files = glob.glob("*.mp3") | |
| wav_files = glob.glob("*.wav") | |
| all_files = md_files + mp3_files + wav_files | |
| if not all_files: | |
| st.sidebar.write("No files found.") | |
| return | |
| # ▶ Sort newest first | |
| all_files = sorted(all_files, key=os.path.getmtime, reverse=True) | |
| for f in all_files: | |
| fname = os.path.basename(f) | |
| ext = os.path.splitext(fname)[1].lower().strip('.') | |
| emoji = FILE_EMOJIS.get(ext, '📦') | |
| time_str = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") | |
| with st.sidebar.expander(f"{emoji} {fname}"): | |
| st.write(f"**Modified:** {time_str}") | |
| if ext == "md": | |
| with open(f, "r", encoding="utf-8") as file_in: | |
| snippet = file_in.read(200).replace("\n", " ") | |
| if len(snippet) == 200: | |
| snippet += "..." | |
| st.write(snippet) | |
| dl_link = create_download_link_with_cache(f, file_type="md") | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| elif ext in ["mp3","wav"]: | |
| st.audio(f) | |
| dl_link = create_download_link_with_cache(f, file_type=ext) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| else: | |
| dl_link = create_download_link_with_cache(f) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| # ───────────────────────────────────────────────────────── | |
| # MAIN APP | |
| # ───────────────────────────────────────────────────────── | |
| def main(): | |
| # ▶ 1) Setup marquee UI in the sidebar | |
| update_marquee_settings_ui() | |
| marquee_settings = get_marquee_settings() | |
| # ▶ 2) Display the marquee welcome | |
| display_marquee( | |
| st.session_state['marquee_content'], | |
| {**marquee_settings, "font-size": "28px", "lineHeight": "50px"}, | |
| key_suffix="welcome" | |
| ) | |
| # ▶ 3) Main action tabs | |
| tab_main = st.radio("Action:", ["🎤 Voice", "📸 Media", "🔍 ArXiv", "📝 Editor"], | |
| horizontal=True) | |
| # ▶ 4) Show or hide custom component (optional example) | |
| mycomponent = components.declare_component("mycomponent", path="mycomponent") | |
| val = mycomponent(my_input_value="Hello from MyComponent") | |
| if val: | |
| val_stripped = val.replace('\\n', ' ') | |
| edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100) | |
| run_option = st.selectbox("Model:", ["Arxiv", "Other (demo)"]) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| autorun = st.checkbox("⚙ AutoRun", value=True) | |
| with col2: | |
| full_audio = st.checkbox("📚FullAudio", value=False) | |
| input_changed = (val != st.session_state.old_val) | |
| if autorun and input_changed: | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input | |
| perform_ai_lookup(edited_input, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=full_audio) | |
| else: | |
| if st.button("▶ Run"): | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input | |
| perform_ai_lookup(edited_input, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=full_audio) | |
| # ───────────────────────────────────────────────────────── | |
| # TAB: ArXiv | |
| # ───────────────────────────────────────────────────────── | |
| if tab_main == "🔍 ArXiv": | |
| st.subheader("🔍 Query ArXiv") | |
| q = st.text_input("🔍 Query:", key="arxiv_query") | |
| st.markdown("### 🎛 Options") | |
| vocal_summary = st.checkbox("🎙ShortAudio", value=True, key="option_vocal_summary") | |
| extended_refs = st.checkbox("📜LongRefs", value=False, key="option_extended_refs") | |
| titles_summary = st.checkbox("🔖TitlesOnly", value=True, key="option_titles_summary") | |
| full_audio = st.checkbox("📚FullAudio", value=False, key="option_full_audio") | |
| full_transcript = st.checkbox("🧾FullTranscript", value=False, key="option_full_transcript") | |
| if q and st.button("🔍Run"): | |
| st.session_state.last_query = q | |
| result = perform_ai_lookup(q, | |
| vocal_summary=vocal_summary, | |
| extended_refs=extended_refs, | |
| titles_summary=titles_summary, | |
| full_audio=full_audio) | |
| if full_transcript: | |
| create_file(q, result, "md") | |
| # ───────────────────────────────────────────────────────── | |
| # TAB: Voice | |
| # ───────────────────────────────────────────────────────── | |
| elif tab_main == "🎤 Voice": | |
| display_voice_tab() | |
| # ───────────────────────────────────────────────────────── | |
| # TAB: Media | |
| # ───────────────────────────────────────────────────────── | |
| elif tab_main == "📸 Media": | |
| st.header("📸 Media Gallery") | |
| tabs = st.tabs(["🎵 Audio", "🖼 Images", "🎥 Video"]) | |
| # ▶ AUDIO sub-tab | |
| with tabs[0]: | |
| st.subheader("🎵 Audio Files") | |
| audio_files = glob.glob("*.mp3") + glob.glob("*.wav") | |
| if audio_files: | |
| for a in audio_files: | |
| with st.expander(os.path.basename(a)): | |
| st.audio(a) | |
| ext = os.path.splitext(a)[1].replace('.', '') | |
| dl_link = create_download_link_with_cache(a, file_type=ext) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| else: | |
| st.write("No audio files found.") | |
| # ▶ IMAGES sub-tab | |
| with tabs[1]: | |
| st.subheader("🖼 Image Files") | |
| imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg") | |
| if imgs: | |
| c = st.slider("Cols", 1, 5, 3, key="cols_images") | |
| cols = st.columns(c) | |
| for i, f in enumerate(imgs): | |
| with cols[i % c]: | |
| st.image(Image.open(f), use_container_width=True) | |
| else: | |
| st.write("No images found.") | |
| # ▶ VIDEO sub-tab | |
| with tabs[2]: | |
| st.subheader("🎥 Video Files") | |
| vids = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi") | |
| if vids: | |
| for v in vids: | |
| with st.expander(os.path.basename(v)): | |
| st.video(v) | |
| else: | |
| st.write("No videos found.") | |
| # ───────────────────────────────────────────────────────── | |
| # TAB: Editor | |
| # ───────────────────────────────────────────────────────── | |
| elif tab_main == "📝 Editor": | |
| st.write("### 📝 File Editor (Minimal Demo)") | |
| st.write("Select or create a file to edit. More advanced features can be added as needed.") | |
| # ───────────────────────────────────────────────────────── | |
| # SIDEBAR: FILE HISTORY + PERFORMANCE METRICS | |
| # ───────────────────────────────────────────────────────── | |
| display_file_history_in_sidebar() | |
| log_performance_metrics() | |
| # ▶ Some light CSS styling | |
| st.markdown(""" | |
| <style> | |
| .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; } | |
| .stMarkdown { font-family: 'Helvetica Neue', sans-serif; } | |
| .stButton>button { margin-right: 0.5rem; } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # ▶ Rerun if needed | |
| if st.session_state.should_rerun: | |
| st.session_state.should_rerun = False | |
| st.experimental_rerun() | |
| # ───────────────────────────────────────────────────────── | |
| # 8. RUN APP | |
| # ───────────────────────────────────────────────────────── | |
| if __name__ == "__main__": | |
| main() | |