Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import anthropic | |
| import openai | |
| import base64 | |
| import cv2 | |
| import glob | |
| import json | |
| import math | |
| import os | |
| import pytz | |
| import random | |
| import re | |
| import requests | |
| import textract | |
| import time | |
| import zipfile | |
| import plotly.graph_objects as go | |
| import streamlit.components.v1 as components | |
| from datetime import datetime | |
| from audio_recorder_streamlit import audio_recorder | |
| from bs4 import BeautifulSoup | |
| from collections import defaultdict, deque, Counter | |
| from dotenv import load_dotenv | |
| from gradio_client import Client | |
| from huggingface_hub import InferenceClient | |
| from io import BytesIO | |
| from PIL import Image | |
| from PyPDF2 import PdfReader | |
| from urllib.parse import quote | |
| from xml.etree import ElementTree as ET | |
| from openai import OpenAI | |
| import extra_streamlit_components as stx | |
| from streamlit.runtime.scriptrunner import get_script_run_ctx | |
| import asyncio | |
| import edge_tts | |
| from streamlit_marquee import streamlit_marquee | |
| from concurrent.futures import ThreadPoolExecutor | |
| from functools import partial | |
| from typing import Dict, List, Optional, Tuple, Union | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 1. CORE CONFIGURATION & SETUP | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| st.set_page_config( | |
| page_title="π²TalkingAIResearcherπ", | |
| page_icon="π²π", | |
| layout="wide", | |
| initial_sidebar_state="auto", | |
| menu_items={ | |
| 'Get Help': 'https://huggingface.co/awacke1', | |
| 'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
| 'About': "π²TalkingAIResearcherπ" | |
| } | |
| ) | |
| load_dotenv() | |
| # Available English voices for Edge TTS | |
| EDGE_TTS_VOICES = [ | |
| "en-US-AriaNeural", | |
| "en-US-GuyNeural", | |
| "en-US-JennyNeural", | |
| "en-GB-SoniaNeural", | |
| "en-GB-RyanNeural", | |
| "en-AU-NatashaNeural", | |
| "en-AU-WilliamNeural", | |
| "en-CA-ClaraNeural", | |
| "en-CA-LiamNeural" | |
| ] | |
| # Session state initialization with default values | |
| DEFAULT_SESSION_STATE = { | |
| 'marquee_settings': { | |
| "background": "#1E1E1E", | |
| "color": "#FFFFFF", | |
| "font-size": "14px", | |
| "animationDuration": "20s", | |
| "width": "100%", | |
| "lineHeight": "35px" | |
| }, | |
| 'tts_voice': EDGE_TTS_VOICES[0], | |
| 'audio_format': 'mp3', | |
| 'transcript_history': [], | |
| 'chat_history': [], | |
| 'openai_model': "gpt-4o-2024-05-13", | |
| 'messages': [], | |
| 'last_voice_input': "", | |
| 'editing_file': None, | |
| 'edit_new_name': "", | |
| 'edit_new_content': "", | |
| 'viewing_prefix': None, | |
| 'should_rerun': False, | |
| 'old_val': None, | |
| 'last_query': "", | |
| 'marquee_content': "π Welcome to TalkingAIResearcher | π€ Your Research Assistant", | |
| 'enable_audio': False, | |
| 'enable_download': False, | |
| 'enable_claude': True, | |
| 'audio_cache': {}, | |
| 'paper_cache': {}, | |
| 'download_link_cache': {}, | |
| 'performance_metrics': defaultdict(list), | |
| 'operation_timings': defaultdict(float) | |
| } | |
| # Initialize session state | |
| for key, value in DEFAULT_SESSION_STATE.items(): | |
| if key not in st.session_state: | |
| st.session_state[key] = value | |
| # API Keys and Configuration | |
| openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
| anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
| xai_key = os.getenv('xai', "") | |
| if 'OPENAI_API_KEY' in st.secrets: | |
| openai_api_key = st.secrets['OPENAI_API_KEY'] | |
| if 'ANTHROPIC_API_KEY' in st.secrets: | |
| anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
| openai.api_key = openai_api_key | |
| openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
| HF_KEY = os.getenv('HF_KEY') | |
| API_URL = os.getenv('API_URL') | |
| # File type emojis for display | |
| FILE_EMOJIS = { | |
| "md": "π", | |
| "mp3": "π΅", | |
| "wav": "π", | |
| "pdf": "π", | |
| "txt": "π", | |
| "json": "π", | |
| "csv": "π" | |
| } | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 2. PERFORMANCE MONITORING & TIMING | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| class PerformanceTimer: | |
| """Context manager for timing operations with automatic logging.""" | |
| def __init__(self, operation_name: str): | |
| self.operation_name = operation_name | |
| self.start_time = None | |
| def __enter__(self): | |
| self.start_time = time.time() | |
| return self | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| if not exc_type: # Only log if no exception occurred | |
| duration = time.time() - self.start_time | |
| st.session_state['operation_timings'][self.operation_name] = duration | |
| st.session_state['performance_metrics'][self.operation_name].append(duration) | |
| def log_performance_metrics(): | |
| """Display performance metrics in the sidebar.""" | |
| st.sidebar.markdown("### β±οΈ Performance Metrics") | |
| metrics = st.session_state['operation_timings'] | |
| if metrics: | |
| total_time = sum(metrics.values()) | |
| st.sidebar.write(f"**Total Processing Time:** {total_time:.2f}s") | |
| # Create timing breakdown | |
| for operation, duration in metrics.items(): | |
| percentage = (duration / total_time) * 100 | |
| st.sidebar.write(f"**{operation}:** {duration:.2f}s ({percentage:.1f}%)") | |
| # Show timing history chart | |
| if st.session_state['performance_metrics']: | |
| history_data = [] | |
| for op, times in st.session_state['performance_metrics'].items(): | |
| if times: # Only show if we have timing data | |
| avg_time = sum(times) / len(times) | |
| history_data.append({"Operation": op, "Avg Time (s)": avg_time}) | |
| if history_data: # Create chart if we have data | |
| st.sidebar.markdown("### π Timing History") | |
| chart_data = pd.DataFrame(history_data) | |
| st.sidebar.bar_chart(chart_data.set_index("Operation")) | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 3. OPTIMIZED AUDIO GENERATION | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def clean_for_speech(text: str) -> str: | |
| """Clean up text for TTS output with enhanced cleaning.""" | |
| with PerformanceTimer("text_cleaning"): | |
| # Remove markdown formatting | |
| text = re.sub(r'#+ ', '', text) # Remove headers | |
| text = re.sub(r'\[([^\]]+)\]\([^\)]+\)', r'\1', text) # Clean links | |
| text = re.sub(r'[*_~`]', '', text) # Remove emphasis markers | |
| # Remove code blocks | |
| text = re.sub(r'```[\s\S]*?```', '', text) | |
| text = re.sub(r'`[^`]*`', '', text) | |
| # Clean up whitespace | |
| text = re.sub(r'\s+', ' ', text) | |
| text = text.replace("\n", " ") | |
| text = text.replace("</s>", " ") | |
| # Remove URLs | |
| text = re.sub(r'https?://\S+', '', text) | |
| text = re.sub(r'\(https?://[^\)]+\)', '', text) | |
| # Final cleanup | |
| text = text.strip() | |
| return text | |
| async def async_edge_tts_generate( | |
| text: str, | |
| voice: str, | |
| rate: int = 0, | |
| pitch: int = 0, | |
| file_format: str = "mp3" | |
| ) -> Tuple[Optional[str], float]: | |
| """Asynchronous TTS generation with performance tracking and caching.""" | |
| with PerformanceTimer("tts_generation") as timer: | |
| # Clean and validate text | |
| text = clean_for_speech(text) | |
| if not text.strip(): | |
| return None, 0 | |
| # Check cache | |
| cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}" | |
| if cache_key in st.session_state['audio_cache']: | |
| return st.session_state['audio_cache'][cache_key], 0 | |
| try: | |
| # Generate audio | |
| rate_str = f"{rate:+d}%" | |
| pitch_str = f"{pitch:+d}Hz" | |
| communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
| # Generate unique filename | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| filename = f"audio_{timestamp}_{random.randint(1000, 9999)}.{file_format}" | |
| # Save audio file | |
| await communicate.save(filename) | |
| # Cache result | |
| st.session_state['audio_cache'][cache_key] = filename | |
| return filename, time.time() - timer.start_time | |
| except Exception as e: | |
| st.error(f"Error generating audio: {str(e)}") | |
| return None, 0 | |
| async def async_save_qa_with_audio( | |
| question: str, | |
| answer: str, | |
| voice: Optional[str] = None | |
| ) -> Tuple[str, Optional[str], float, float]: | |
| """Asynchronously save Q&A to markdown and generate audio with timing.""" | |
| voice = voice or st.session_state['tts_voice'] | |
| with PerformanceTimer("qa_save") as timer: | |
| # Save markdown | |
| md_start = time.time() | |
| combined_text = f"# Question\n{question}\n\n# Answer\n{answer}" | |
| md_file = create_file(question, answer, "md") | |
| md_time = time.time() - md_start | |
| # Generate audio if enabled | |
| audio_file = None | |
| audio_time = 0 | |
| if st.session_state['enable_audio']: | |
| audio_text = f"{question}\n\nAnswer: {answer}" | |
| audio_file, audio_time = await async_edge_tts_generate( | |
| audio_text, | |
| voice=voice, | |
| file_format=st.session_state['audio_format'] | |
| ) | |
| return md_file, audio_file, md_time, audio_time | |
| def create_download_link_with_cache( | |
| file_path: str, | |
| file_type: str = "mp3" | |
| ) -> str: | |
| """Create download link with caching and error handling.""" | |
| with PerformanceTimer("download_link_generation"): | |
| # Check cache first | |
| cache_key = f"dl_{file_path}" | |
| if cache_key in st.session_state['download_link_cache']: | |
| return st.session_state['download_link_cache'][cache_key] | |
| try: | |
| with open(file_path, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode() | |
| # Generate appropriate link based on file type | |
| filename = os.path.basename(file_path) | |
| if file_type == "mp3": | |
| link = f'<a href="data:audio/mpeg;base64,{b64}" download="{filename}">π΅ Download {filename}</a>' | |
| elif file_type == "wav": | |
| link = f'<a href="data:audio/wav;base64,{b64}" download="{filename}">π Download {filename}</a>' | |
| elif file_type == "md": | |
| link = f'<a href="data:text/markdown;base64,{b64}" download="{filename}">π Download {filename}</a>' | |
| else: | |
| link = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">β¬οΈ Download {filename}</a>' | |
| # Cache and return | |
| st.session_state['download_link_cache'][cache_key] = link | |
| return link | |
| except Exception as e: | |
| st.error(f"Error creating download link: {str(e)}") | |
| return "" | |
| # --- | |
| def display_voice_tab(): | |
| """Display voice input tab with TTS settings.""" | |
| st.subheader("π€ Voice Input") | |
| # Voice Settings Section | |
| st.markdown("### π€ Voice Settings") | |
| st.sidebar.markdown(""" | |
| # ποΈ Voice Character Selector π | |
| 1. Female: | |
| - πΈ **Aria** β Female: π The voice of elegance and creativity, perfect for soothing storytelling or inspiring ideas. | |
| - πΆ **Jenny** β Female: π Sweet and friendly, sheβs the go-to for warm, conversational tones. | |
| - πΊ **Sonia** β Female: π Bold and confident, ideal for commanding attention and delivering with flair. | |
| - π **Natasha** β Female: β¨ Enigmatic and sophisticated, Natasha is great for a touch of mystery and charm. | |
| - π· **Clara** β Female: π Cheerful and gentle, perfect for nurturing, empathetic conversations. | |
| --- | |
| 2. Male: | |
| - π **Guy** β Male: π© Sophisticated and versatile, a natural fit for clear and authoritative delivery. | |
| - π οΈ **Ryan** β Male: π€ Down-to-earth and approachable, ideal for friendly and casual exchanges. | |
| - π» **William** β Male: π Classic and refined, perfect for a scholarly or thoughtful tone. | |
| - π **Liam** β Male: β‘ Energetic and upbeat, great for dynamic, engaging interactions. | |
| """) | |
| selected_voice = st.selectbox( | |
| "Select TTS Voice:", | |
| options=EDGE_TTS_VOICES, | |
| index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) | |
| ) | |
| # Audio Format Selection | |
| st.markdown("### π Audio Format") | |
| selected_format = st.radio( | |
| "Choose Audio Format:", | |
| options=["MP3", "WAV"], | |
| index=0 | |
| ) | |
| # Update session state if settings change | |
| if selected_voice != st.session_state['tts_voice']: | |
| st.session_state['tts_voice'] = selected_voice | |
| st.rerun() | |
| if selected_format.lower() != st.session_state['audio_format']: | |
| st.session_state['audio_format'] = selected_format.lower() | |
| st.rerun() | |
| # Text Input Area | |
| user_text = st.text_area("π¬ Message:", height=100) | |
| user_text = user_text.strip().replace('\n', ' ') | |
| # Send Button | |
| if st.button("π¨ Send"): | |
| process_voice_input(user_text) | |
| # Chat History | |
| st.subheader("π Chat History") | |
| for c in st.session_state.chat_history: | |
| st.write("**You:**", c["user"]) | |
| st.write("**Response:**", c["claude"]) | |
| def display_arxiv_tab(): | |
| """Display ArXiv search tab with options.""" | |
| st.subheader("π Query ArXiv") | |
| q = st.text_input("π Query:", key="arxiv_query") | |
| # Options Section | |
| st.markdown("### π Options") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| vocal_summary = st.checkbox("π Short Audio", value=True, | |
| key="option_vocal_summary") | |
| extended_refs = st.checkbox("π Long Refs", value=False, | |
| key="option_extended_refs") | |
| with col2: | |
| titles_summary = st.checkbox("π Titles Only", value=True, | |
| key="option_titles_summary") | |
| full_audio = st.checkbox("π Full Audio", value=False, | |
| key="option_full_audio") | |
| full_transcript = st.checkbox("π§Ύ Full Transcript", value=False, | |
| key="option_full_transcript") | |
| if q and st.button("π Run Search"): | |
| st.session_state.last_query = q | |
| result, timings = perform_ai_lookup( | |
| q, | |
| vocal_summary=vocal_summary, | |
| extended_refs=extended_refs, | |
| titles_summary=titles_summary, | |
| full_audio=full_audio | |
| ) | |
| if full_transcript: | |
| create_file(q, result, "md") | |
| def display_media_tab(): | |
| """Display media gallery tab with audio, images, and video.""" | |
| st.header("πΈ Media Gallery") | |
| # Create tabs for different media types | |
| tabs = st.tabs(["π΅ Audio", "πΌ Images", "π₯ Video"]) | |
| # Audio Files Tab | |
| with tabs[0]: | |
| st.subheader("π΅ Audio Files") | |
| audio_files = glob.glob("*.mp3") + glob.glob("*.wav") | |
| if audio_files: | |
| for audio_file in audio_files: | |
| with st.expander(os.path.basename(audio_file)): | |
| st.audio(audio_file) | |
| ext = os.path.splitext(audio_file)[1].replace('.', '') | |
| dl_link = get_download_link(audio_file, file_type=ext) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| else: | |
| st.write("No audio files found.") | |
| # Images Tab | |
| with tabs[1]: | |
| st.subheader("πΌ Image Files") | |
| image_files = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg") | |
| if image_files: | |
| cols = st.slider("Columns:", 1, 5, 3, key="cols_images") | |
| image_cols = st.columns(cols) | |
| for i, img_file in enumerate(image_files): | |
| with image_cols[i % cols]: | |
| try: | |
| img = Image.open(img_file) | |
| st.image(img, use_column_width=True) | |
| except Exception as e: | |
| st.error(f"Error loading image {img_file}: {str(e)}") | |
| else: | |
| st.write("No images found.") | |
| # Video Tab | |
| with tabs[2]: | |
| st.subheader("π₯ Video Files") | |
| video_files = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi") | |
| if video_files: | |
| for video_file in video_files: | |
| with st.expander(os.path.basename(video_file)): | |
| st.video(video_file) | |
| else: | |
| st.write("No videos found.") | |
| def display_editor_tab(): | |
| """Display text editor tab with file management.""" | |
| st.subheader("π Text Editor") | |
| # File Management Section | |
| st.markdown("### π File Management") | |
| # File Selection | |
| md_files = glob.glob("*.md") | |
| selected_file = st.selectbox( | |
| "Select file to edit:", | |
| ["New File"] + md_files, | |
| key="file_selector" | |
| ) | |
| # Edit Area | |
| if selected_file == "New File": | |
| new_filename = st.text_input("New filename (without extension):") | |
| file_content = st.text_area("Content:", height=300) | |
| if st.button("πΎ Save File"): | |
| if new_filename: | |
| try: | |
| with open(f"{new_filename}.md", 'w', encoding='utf-8') as f: | |
| f.write(file_content) | |
| st.success(f"File {new_filename}.md saved successfully!") | |
| st.session_state.should_rerun = True | |
| except Exception as e: | |
| st.error(f"Error saving file: {str(e)}") | |
| else: | |
| st.warning("Please enter a filename.") | |
| else: | |
| try: | |
| # Load existing file content | |
| with open(selected_file, 'r', encoding='utf-8') as f: | |
| file_content = f.read() | |
| # Edit existing file | |
| edited_content = st.text_area( | |
| "Edit content:", | |
| value=file_content, | |
| height=300 | |
| ) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| if st.button("πΎ Save Changes"): | |
| try: | |
| with open(selected_file, 'w', encoding='utf-8') as f: | |
| f.write(edited_content) | |
| st.success("Changes saved successfully!") | |
| except Exception as e: | |
| st.error(f"Error saving changes: {str(e)}") | |
| with col2: | |
| if st.button("π Delete File"): | |
| try: | |
| os.remove(selected_file) | |
| st.success(f"File {selected_file} deleted successfully!") | |
| st.session_state.should_rerun = True | |
| except Exception as e: | |
| st.error(f"Error deleting file: {str(e)}") | |
| except Exception as e: | |
| st.error(f"Error loading file {selected_file}: {str(e)}") | |
| def display_settings_tab(): | |
| """Display application settings tab.""" | |
| st.subheader("βοΈ Settings") | |
| # General Settings | |
| st.markdown("### π§ General Settings") | |
| # Theme Selection | |
| theme = st.selectbox( | |
| "Color Theme:", | |
| ["Dark", "Light", "Custom"], | |
| index=0 | |
| ) | |
| if theme == "Custom": | |
| st.color_picker("Primary Color:", "#1E1E1E") | |
| st.color_picker("Secondary Color:", "#2D2D2D") | |
| # Performance Settings | |
| st.markdown("### β‘ Performance Settings") | |
| # Cache Settings | |
| cache_size = st.slider( | |
| "Maximum Cache Size (MB):", | |
| 0, 1000, 100 | |
| ) | |
| if st.button("Clear Cache"): | |
| st.session_state['audio_cache'] = {} | |
| st.session_state['paper_cache'] = {} | |
| st.session_state['download_link_cache'] = {} | |
| st.success("Cache cleared successfully!") | |
| # API Settings | |
| st.markdown("### π API Settings") | |
| # Show/hide API keys | |
| show_keys = st.checkbox("Show API Keys") | |
| if show_keys: | |
| st.text_input("OpenAI API Key:", value=openai_api_key) | |
| st.text_input("Anthropic API Key:", value=anthropic_key) | |
| # Save Settings | |
| if st.button("πΎ Save Settings"): | |
| st.success("Settings saved successfully!") | |
| st.session_state.should_rerun = True | |
| def get_download_link(file: str, file_type: str = "zip") -> str: | |
| """ | |
| Convert a file to base64 and return an HTML link for download. | |
| Supports multiple file types with appropriate MIME types. | |
| """ | |
| try: | |
| with open(file, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode() | |
| # Get filename for display | |
| filename = os.path.basename(file) | |
| # Define MIME types and emoji icons for different file types | |
| mime_types = { | |
| "zip": ("application/zip", "π"), | |
| "mp3": ("audio/mpeg", "π΅"), | |
| "wav": ("audio/wav", "π"), | |
| "md": ("text/markdown", "π"), | |
| "pdf": ("application/pdf", "π"), | |
| "txt": ("text/plain", "π"), | |
| "json": ("application/json", "π"), | |
| "csv": ("text/csv", "π"), | |
| "png": ("image/png", "πΌ"), | |
| "jpg": ("image/jpeg", "πΌ"), | |
| "jpeg": ("image/jpeg", "πΌ") | |
| } | |
| # Get MIME type and emoji for file | |
| mime_type, emoji = mime_types.get( | |
| file_type.lower(), | |
| ("application/octet-stream", "β¬οΈ") | |
| ) | |
| # Create download link with appropriate MIME type | |
| link = f'<a href="data:{mime_type};base64,{b64}" download="{filename}">{emoji} Download {filename}</a>' | |
| return link | |
| except FileNotFoundError: | |
| return f"<p style='color: red'>β File not found: {file}</p>" | |
| except Exception as e: | |
| return f"<p style='color: red'>β Error creating download link: {str(e)}</p>" | |
| def play_and_download_audio(file_path: str, file_type: str = "mp3"): | |
| """ | |
| Display audio player and download link for audio file. | |
| Includes error handling and file validation. | |
| """ | |
| if not file_path: | |
| st.warning("No audio file provided.") | |
| return | |
| if not os.path.exists(file_path): | |
| st.error(f"Audio file not found: {file_path}") | |
| return | |
| try: | |
| # Display audio player | |
| st.audio(file_path) | |
| # Create and display download link | |
| dl_link = get_download_link(file_path, file_type=file_type) | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| except Exception as e: | |
| st.error(f"Error playing audio: {str(e)}") | |
| def get_file_info(file_path: str) -> dict: | |
| """ | |
| Get detailed information about a file. | |
| Returns dictionary with size, modification time, and other metadata. | |
| """ | |
| try: | |
| stats = os.stat(file_path) | |
| # Get basic file information | |
| info = { | |
| 'name': os.path.basename(file_path), | |
| 'path': file_path, | |
| 'size': stats.st_size, | |
| 'modified': datetime.fromtimestamp(stats.st_mtime), | |
| 'created': datetime.fromtimestamp(stats.st_ctime), | |
| 'type': os.path.splitext(file_path)[1].lower().strip('.'), | |
| } | |
| # Add formatted size | |
| if info['size'] < 1024: | |
| info['size_fmt'] = f"{info['size']} B" | |
| elif info['size'] < 1024 * 1024: | |
| info['size_fmt'] = f"{info['size']/1024:.1f} KB" | |
| else: | |
| info['size_fmt'] = f"{info['size']/(1024*1024):.1f} MB" | |
| # Add formatted dates | |
| info['modified_fmt'] = info['modified'].strftime("%Y-%m-%d %H:%M:%S") | |
| info['created_fmt'] = info['created'].strftime("%Y-%m-%d %H:%M:%S") | |
| return info | |
| except Exception as e: | |
| st.error(f"Error getting file info: {str(e)}") | |
| return None | |
| def sanitize_filename(filename: str) -> str: | |
| """ | |
| Clean and sanitize a filename to ensure it's safe for filesystem. | |
| Removes/replaces unsafe characters and enforces length limits. | |
| """ | |
| # Remove or replace unsafe characters | |
| filename = re.sub(r'[<>:"/\\|?*]', '_', filename) | |
| # Remove leading/trailing spaces and dots | |
| filename = filename.strip('. ') | |
| # Limit length (reserving space for extension) | |
| max_length = 255 | |
| name, ext = os.path.splitext(filename) | |
| if len(filename) > max_length: | |
| return name[:(max_length-len(ext))] + ext | |
| return filename | |
| def create_file_with_metadata(filename: str, content: str, metadata: dict = None): | |
| """ | |
| Create a file with optional metadata header. | |
| Useful for storing additional information with files. | |
| """ | |
| try: | |
| # Sanitize filename | |
| safe_filename = sanitize_filename(filename) | |
| # Ensure directory exists | |
| os.makedirs(os.path.dirname(safe_filename) or '.', exist_ok=True) | |
| # Prepare content with metadata | |
| if metadata: | |
| metadata_str = json.dumps(metadata, indent=2) | |
| full_content = f"""--- | |
| {metadata_str} | |
| --- | |
| {content}""" | |
| else: | |
| full_content = content | |
| # Write file | |
| with open(safe_filename, 'w', encoding='utf-8') as f: | |
| f.write(full_content) | |
| return safe_filename | |
| except Exception as e: | |
| st.error(f"Error creating file: {str(e)}") | |
| return None | |
| def read_file_with_metadata(filename: str) -> tuple: | |
| """ | |
| Read a file and extract any metadata header. | |
| Returns tuple of (content, metadata). | |
| """ | |
| try: | |
| with open(filename, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| # Check for metadata section | |
| if content.startswith('---\n'): | |
| # Find end of metadata section | |
| end_meta = content.find('\n---\n', 4) | |
| if end_meta != -1: | |
| try: | |
| metadata = json.loads(content[4:end_meta]) | |
| content = content[end_meta+5:] | |
| return content, metadata | |
| except json.JSONDecodeError: | |
| pass | |
| return content, None | |
| except Exception as e: | |
| st.error(f"Error reading file: {str(e)}") | |
| return None, None | |
| def archive_files(file_paths: list, archive_name: str = None) -> str: | |
| """ | |
| Create a zip archive containing the specified files. | |
| Returns path to created archive. | |
| """ | |
| try: | |
| # Generate archive name if not provided | |
| if not archive_name: | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| archive_name = f"archive_{timestamp}.zip" | |
| # Create zip file | |
| with zipfile.ZipFile(archive_name, 'w', zipfile.ZIP_DEFLATED) as zf: | |
| for file_path in file_paths: | |
| if os.path.exists(file_path): | |
| zf.write(file_path, os.path.basename(file_path)) | |
| return archive_name | |
| except Exception as e: | |
| st.error(f"Error creating archive: {str(e)}") | |
| return None | |
| def list_files_by_type(directory: str = ".", | |
| extensions: list = None, | |
| recursive: bool = False) -> dict: | |
| """ | |
| List files in directory filtered by extension. | |
| Returns dict grouping files by type. | |
| """ | |
| try: | |
| if extensions is None: | |
| extensions = ['md', 'mp3', 'wav', 'pdf', 'txt', 'json', 'csv'] | |
| files = {} | |
| pattern = "**/*" if recursive else "*" | |
| for ext in extensions: | |
| glob_pattern = f"{pattern}.{ext}" | |
| matches = glob.glob(os.path.join(directory, glob_pattern), | |
| recursive=recursive) | |
| if matches: | |
| files[ext] = matches | |
| return files | |
| except Exception as e: | |
| st.error(f"Error listing files: {str(e)}") | |
| return {} | |
| def get_central_time() -> datetime: | |
| """Get current time in US Central timezone.""" | |
| central = pytz.timezone('US/Central') | |
| return datetime.now(central) | |
| def format_timestamp_prefix() -> str: | |
| """Generate timestamp prefix in format MM_dd_yy_hh_mm_AM/PM.""" | |
| ct = get_central_time() | |
| return ct.strftime("%m_%d_%y_%I_%M_%p") | |
| def get_formatted_time(dt: datetime = None, | |
| timezone: str = 'US/Central', | |
| include_timezone: bool = True, | |
| include_seconds: bool = False) -> str: | |
| """ | |
| Format a datetime object with specified options. | |
| If no datetime is provided, uses current time. | |
| """ | |
| if dt is None: | |
| tz = pytz.timezone(timezone) | |
| dt = datetime.now(tz) | |
| elif dt.tzinfo is None: | |
| tz = pytz.timezone(timezone) | |
| dt = tz.localize(dt) | |
| format_string = "%Y-%m-%d %I:%M" | |
| if include_seconds: | |
| format_string += ":%S" | |
| format_string += " %p" | |
| if include_timezone: | |
| format_string += " %Z" | |
| return dt.strftime(format_string) | |
| def parse_timestamp(timestamp_str: str, | |
| timezone: str = 'US/Central') -> Optional[datetime]: | |
| """ | |
| Parse a timestamp string in various formats. | |
| Returns timezone-aware datetime object. | |
| """ | |
| try: | |
| # Try different format patterns | |
| patterns = [ | |
| "%m_%d_%y_%I_%M_%p", # Standard app format | |
| "%Y-%m-%d %I:%M %p", # Common 12-hour format | |
| "%Y-%m-%d %H:%M", # 24-hour format | |
| "%m/%d/%y %I:%M %p", # US date format | |
| "%d/%m/%y %I:%M %p" # European date format | |
| ] | |
| dt = None | |
| for pattern in patterns: | |
| try: | |
| dt = datetime.strptime(timestamp_str, pattern) | |
| break | |
| except ValueError: | |
| continue | |
| if dt is None: | |
| raise ValueError(f"Could not parse timestamp: {timestamp_str}") | |
| # Add timezone if not present | |
| if dt.tzinfo is None: | |
| tz = pytz.timezone(timezone) | |
| dt = tz.localize(dt) | |
| return dt | |
| except Exception as e: | |
| st.error(f"Error parsing timestamp: {str(e)}") | |
| return None | |
| def get_time_ago(dt: datetime) -> str: | |
| """ | |
| Convert datetime to human-readable "time ago" format. | |
| E.g., "2 hours ago", "3 days ago", etc. | |
| """ | |
| try: | |
| now = datetime.now(dt.tzinfo) | |
| diff = now - dt | |
| seconds = diff.total_seconds() | |
| if seconds < 60: | |
| return "just now" | |
| elif seconds < 3600: | |
| minutes = int(seconds / 60) | |
| return f"{minutes} minute{'s' if minutes != 1 else ''} ago" | |
| elif seconds < 86400: | |
| hours = int(seconds / 3600) | |
| return f"{hours} hour{'s' if hours != 1 else ''} ago" | |
| elif seconds < 604800: | |
| days = int(seconds / 86400) | |
| return f"{days} day{'s' if days != 1 else ''} ago" | |
| elif seconds < 2592000: | |
| weeks = int(seconds / 604800) | |
| return f"{weeks} week{'s' if weeks != 1 else ''} ago" | |
| elif seconds < 31536000: | |
| months = int(seconds / 2592000) | |
| return f"{months} month{'s' if months != 1 else ''} ago" | |
| else: | |
| years = int(seconds / 31536000) | |
| return f"{years} year{'s' if years != 1 else ''} ago" | |
| except Exception as e: | |
| st.error(f"Error calculating time ago: {str(e)}") | |
| return "unknown time ago" | |
| def format_duration(seconds: float) -> str: | |
| """ | |
| Format a duration in seconds to human-readable string. | |
| E.g., "2m 30s", "1h 15m", etc. | |
| """ | |
| try: | |
| if seconds < 0: | |
| return "invalid duration" | |
| # Handle special cases | |
| if seconds < 1: | |
| return f"{seconds * 1000:.0f}ms" | |
| if seconds < 60: | |
| return f"{seconds:.1f}s" | |
| # Calculate hours, minutes, seconds | |
| hours = int(seconds // 3600) | |
| minutes = int((seconds % 3600) // 60) | |
| secs = seconds % 60 | |
| # Build duration string | |
| parts = [] | |
| if hours > 0: | |
| parts.append(f"{hours}h") | |
| if minutes > 0: | |
| parts.append(f"{minutes}m") | |
| if secs > 0 and hours == 0: # Only show seconds if less than an hour | |
| parts.append(f"{secs:.1f}s") | |
| return " ".join(parts) | |
| except Exception as e: | |
| st.error(f"Error formatting duration: {str(e)}") | |
| return "unknown duration" | |
| async def create_paper_audio_files(papers: List[Dict], input_question: str): | |
| """Generate audio files for papers asynchronously with improved naming.""" | |
| with PerformanceTimer("paper_audio_generation"): | |
| tasks = [] | |
| for paper in papers: | |
| try: | |
| # Prepare text for audio generation | |
| audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
| audio_text = clean_for_speech(audio_text) | |
| # Create sanitized title for filename | |
| safe_title = paper['title'].lower() | |
| safe_title = re.sub(r'[^\w\s-]', '', safe_title) # Remove special chars | |
| safe_title = re.sub(r'\s+', '_', safe_title) # Replace spaces with underscores | |
| safe_title = safe_title[:100] # Limit length | |
| # Generate timestamp | |
| timestamp = format_timestamp_prefix() | |
| # Create filename with timestamp and title | |
| filename = f"{timestamp}_{safe_title}.{st.session_state['audio_format']}" | |
| # Create task for audio generation | |
| async def generate_audio(text, filename): | |
| rate_str = "0%" | |
| pitch_str = "0Hz" | |
| communicate = edge_tts.Communicate(text, st.session_state['tts_voice']) | |
| await communicate.save(filename) | |
| return filename | |
| task = generate_audio(audio_text, filename) | |
| tasks.append((paper, task, filename)) | |
| except Exception as e: | |
| st.warning(f"Error preparing audio for paper {paper['title']}: {str(e)}") | |
| continue | |
| # Process all audio generation tasks concurrently | |
| for paper, task, filename in tasks: | |
| try: | |
| audio_file = await task | |
| if audio_file: | |
| paper['full_audio'] = audio_file | |
| if st.session_state['enable_download']: | |
| paper['download_base64'] = create_download_link_with_cache( | |
| audio_file, | |
| st.session_state['audio_format'] | |
| ) | |
| except Exception as e: | |
| st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}") | |
| paper['full_audio'] = None | |
| paper['download_base64'] = '' | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 4. PAPER PROCESSING & DISPLAY | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def parse_arxiv_refs(ref_text: str) -> List[Dict[str, str]]: | |
| """Parse arxiv references with improved error handling.""" | |
| if not ref_text: | |
| return [] | |
| with PerformanceTimer("parse_refs"): | |
| results = [] | |
| current_paper = {} | |
| lines = ref_text.split('\n') | |
| for i, line in enumerate(lines): | |
| try: | |
| if line.count('|') == 2: | |
| # Found a new paper line | |
| if current_paper: | |
| results.append(current_paper) | |
| if len(results) >= 20: # Limit to 20 papers | |
| break | |
| # Parse header parts | |
| header_parts = line.strip('* ').split('|') | |
| date = header_parts[0].strip() | |
| title = header_parts[1].strip() | |
| url_match = re.search(r'(https://arxiv.org/\S+)', line) | |
| url = url_match.group(1) if url_match else f"paper_{len(results)}" | |
| current_paper = { | |
| 'date': date, | |
| 'title': title, | |
| 'url': url, | |
| 'authors': '', | |
| 'summary': '', | |
| 'full_audio': None, | |
| 'download_base64': '', | |
| } | |
| elif current_paper: | |
| # Add content to current paper | |
| line = line.strip('* ') | |
| if not current_paper['authors']: | |
| current_paper['authors'] = line | |
| else: | |
| if current_paper['summary']: | |
| current_paper['summary'] += ' ' + line | |
| else: | |
| current_paper['summary'] = line | |
| except Exception as e: | |
| st.warning(f"Error parsing line {i}: {str(e)}") | |
| continue | |
| # Add final paper if exists | |
| if current_paper: | |
| results.append(current_paper) | |
| return results[:20] # Ensure we don't exceed 20 papers | |
| async def create_paper_audio_files(papers: List[Dict], input_question: str): | |
| """Generate audio files for papers asynchronously with progress tracking.""" | |
| with PerformanceTimer("paper_audio_generation"): | |
| tasks = [] | |
| for paper in papers: | |
| try: | |
| # Prepare text for audio generation | |
| audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
| audio_text = clean_for_speech(audio_text) | |
| # Create task for audio generation | |
| task = async_edge_tts_generate( | |
| audio_text, | |
| voice=st.session_state['tts_voice'], | |
| file_format=st.session_state['audio_format'] | |
| ) | |
| tasks.append((paper, task)) | |
| except Exception as e: | |
| st.warning(f"Error preparing audio for paper {paper['title']}: {str(e)}") | |
| continue | |
| # Process all audio generation tasks concurrently | |
| for paper, task in tasks: | |
| try: | |
| audio_file, gen_time = await task | |
| if audio_file: | |
| paper['full_audio'] = audio_file | |
| if st.session_state['enable_download']: | |
| paper['download_base64'] = create_download_link_with_cache( | |
| audio_file, | |
| st.session_state['audio_format'] | |
| ) | |
| except Exception as e: | |
| st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}") | |
| paper['full_audio'] = None | |
| paper['download_base64'] = '' | |
| def initialize_marquee_settings(): | |
| """Initialize default marquee settings if not present in session state.""" | |
| if 'marquee_settings' not in st.session_state: | |
| st.session_state['marquee_settings'] = { | |
| "background": "#1E1E1E", | |
| "color": "#FFFFFF", | |
| "font-size": "14px", | |
| "animationDuration": "20s", | |
| "width": "100%", | |
| "lineHeight": "35px" | |
| } | |
| def get_marquee_settings(): | |
| """Get current marquee settings, initializing if needed.""" | |
| initialize_marquee_settings() | |
| return st.session_state['marquee_settings'] | |
| def update_marquee_settings_ui(): | |
| """Add color pickers & sliders for marquee configuration in sidebar.""" | |
| st.sidebar.markdown("### π― Marquee Settings") | |
| # Create two columns for settings | |
| cols = st.sidebar.columns(2) | |
| # Column 1: Color settings | |
| with cols[0]: | |
| # Background color picker | |
| bg_color = st.color_picker( | |
| "π¨ Background", | |
| st.session_state['marquee_settings']["background"], | |
| key="bg_color_picker" | |
| ) | |
| # Text color picker | |
| text_color = st.color_picker( | |
| "βοΈ Text Color", | |
| st.session_state['marquee_settings']["color"], | |
| key="text_color_picker" | |
| ) | |
| # Column 2: Size and speed settings | |
| with cols[1]: | |
| # Font size slider | |
| font_size = st.slider( | |
| "π Font Size", | |
| 10, 24, 14, | |
| key="font_size_slider" | |
| ) | |
| # Animation duration slider | |
| duration = st.slider( | |
| "β±οΈ Animation Speed", | |
| 1, 20, 20, | |
| key="duration_slider" | |
| ) | |
| # Update session state with new settings | |
| st.session_state['marquee_settings'].update({ | |
| "background": bg_color, | |
| "color": text_color, | |
| "font-size": f"{font_size}px", | |
| "animationDuration": f"{duration}s" | |
| }) | |
| def display_marquee(text: str, settings: dict, key_suffix: str = ""): | |
| """Show marquee text with specified style settings.""" | |
| # Truncate long text to prevent performance issues | |
| truncated_text = text[:280] + "..." if len(text) > 280 else text | |
| # Display the marquee | |
| streamlit_marquee( | |
| content=truncated_text, | |
| **settings, | |
| key=f"marquee_{key_suffix}" | |
| ) | |
| # Add spacing after marquee | |
| st.write("") | |
| def create_paper_links_md(papers: list) -> str: | |
| """Creates a minimal markdown file linking to each paper's arxiv URL.""" | |
| lines = ["# Paper Links\n"] | |
| for i, p in enumerate(papers, start=1): | |
| lines.append(f"{i}. **{p['title']}** β [Arxiv]({p['url']})") | |
| return "\n".join(lines) | |
| def apply_custom_styling(): | |
| """Apply custom CSS styling to the app.""" | |
| st.markdown(""" | |
| <style> | |
| .main { | |
| background: linear-gradient(to right, #1a1a1a, #2d2d2d); | |
| color: #fff; | |
| } | |
| .stMarkdown { | |
| font-family: 'Helvetica Neue', sans-serif; | |
| } | |
| .stButton>button { | |
| margin-right: 0.5rem; | |
| } | |
| .streamlit-marquee { | |
| margin: 1rem 0; | |
| border-radius: 4px; | |
| } | |
| .st-emotion-cache-1y4p8pa { | |
| padding: 1rem; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| def display_performance_metrics(timings: dict): | |
| """Display performance metrics with visualizations.""" | |
| st.sidebar.markdown("### β±οΈ Performance Metrics") | |
| # Calculate total time | |
| total_time = sum(timings.values()) | |
| st.sidebar.write(f"**Total Processing Time:** {total_time:.2f}s") | |
| # Show breakdown of operations | |
| st.sidebar.markdown("#### Operation Breakdown") | |
| for operation, duration in timings.items(): | |
| percentage = (duration / total_time) * 100 if total_time > 0 else 0 | |
| st.sidebar.write(f"**{operation}:** {duration:.2f}s ({percentage:.1f}%)") | |
| # Create a progress bar for visual representation | |
| st.sidebar.progress(percentage / 100) | |
| def display_papers(papers: List[Dict], marquee_settings: Dict): | |
| """Display paper information with enhanced visualization.""" | |
| with PerformanceTimer("paper_display"): | |
| st.write("## π Research Papers") | |
| # Create tabs for different views | |
| tab1, tab2 = st.tabs(["π List View", "π Grid View"]) | |
| with tab1: | |
| for i, paper in enumerate(papers, start=1): | |
| # Create marquee for paper title | |
| marquee_text = f"π {paper['title']} | π€ {paper['authors'][:120]}" | |
| display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}") | |
| # Paper details expander | |
| with st.expander(f"{i}. π {paper['title']}", expanded=True): | |
| # Create PDF link | |
| pdf_url = paper['url'].replace('/abs/', '/pdf/') | |
| # Display paper information | |
| st.markdown(f""" | |
| **Date:** {paper['date']} | |
| **Title:** {paper['title']} | |
| **Links:** π [Abstract]({paper['url']}) | π [PDF]({pdf_url}) | |
| """) | |
| st.markdown(f"**Authors:** {paper['authors']}") | |
| st.markdown(f"**Summary:** {paper['summary']}") | |
| # Audio player and download if available | |
| if paper.get('full_audio'): | |
| st.write("π§ Paper Audio Summary") | |
| st.audio(paper['full_audio']) | |
| if paper['download_base64']: | |
| st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
| with tab2: | |
| # Create a grid layout of papers | |
| cols = st.columns(3) | |
| for i, paper in enumerate(papers): | |
| with cols[i % 3]: | |
| st.markdown(f""" | |
| ### π {paper['title'][:50]}... | |
| **Date:** {paper['date']} | |
| [Abstract]({paper['url']}) | [PDF]({paper['url'].replace('/abs/', '/pdf/')}) | |
| """) | |
| if paper.get('full_audio'): | |
| st.audio(paper['full_audio']) | |
| def display_papers_in_sidebar(papers: List[Dict]): | |
| """Display paper listing in sidebar with lazy loading.""" | |
| with PerformanceTimer("sidebar_display"): | |
| st.sidebar.title("π Papers Overview") | |
| # Add filter options | |
| filter_date = st.sidebar.date_input("Filter by date:", None) | |
| search_term = st.sidebar.text_input("Search papers:", "") | |
| # Filter papers based on criteria | |
| filtered_papers = papers | |
| if filter_date: | |
| filtered_papers = [p for p in filtered_papers | |
| if filter_date.strftime("%Y-%m-%d") in p['date']] | |
| if search_term: | |
| search_lower = search_term.lower() | |
| filtered_papers = [p for p in filtered_papers | |
| if search_lower in p['title'].lower() | |
| or search_lower in p['authors'].lower()] | |
| # Display filtered papers | |
| for i, paper in enumerate(filtered_papers, start=1): | |
| paper_key = f"paper_{paper['url']}" | |
| if paper_key not in st.session_state: | |
| st.session_state[paper_key] = False | |
| with st.sidebar.expander(f"{i}. {paper['title'][:50]}...", expanded=False): | |
| # Paper metadata | |
| st.markdown(f"**Date:** {paper['date']}") | |
| # Links | |
| pdf_url = paper['url'].replace('/abs/', '/pdf/') | |
| st.markdown(f"π [Abstract]({paper['url']}) | π [PDF]({pdf_url})") | |
| # Preview of authors and summary | |
| st.markdown(f"**Authors:** {paper['authors'][:100]}...") | |
| if paper['summary']: | |
| st.markdown(f"**Summary:** {paper['summary'][:200]}...") | |
| # Audio controls | |
| if paper['full_audio']: | |
| if st.button("π΅ Load Audio", key=f"btn_{paper_key}"): | |
| st.session_state[paper_key] = True | |
| if st.session_state[paper_key]: | |
| st.audio(paper['full_audio']) | |
| if paper['download_base64']: | |
| st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 5. FILE MANAGEMENT & HISTORY | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def create_file(prompt: str, response: str, file_type: str = "md") -> str: | |
| """Create a file with proper naming and error handling.""" | |
| with PerformanceTimer("file_creation"): | |
| try: | |
| # Generate filename | |
| filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
| # Ensure directory exists | |
| os.makedirs("generated_files", exist_ok=True) | |
| filepath = os.path.join("generated_files", filename) | |
| # Write content | |
| with open(filepath, 'w', encoding='utf-8') as f: | |
| if file_type == "md": | |
| f.write(f"# Query\n{prompt}\n\n# Response\n{response}") | |
| else: | |
| f.write(f"{prompt}\n\n{response}") | |
| return filepath | |
| except Exception as e: | |
| st.error(f"Error creating file: {str(e)}") | |
| return "" | |
| def get_high_info_terms(text: str, top_n: int = 10) -> List[str]: | |
| """Extract most informative terms from text.""" | |
| # Common English stop words to filter out | |
| stop_words = set([ | |
| 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', | |
| 'for', 'of', 'with', 'by', 'from', 'up', 'about', 'into', 'over', | |
| 'after', 'the', 'this', 'that', 'these', 'those', 'what', 'which' | |
| ]) | |
| # Extract words and bi-grams | |
| words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
| bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
| # Combine and filter terms | |
| combined = words + bi_grams | |
| filtered = [term for term in combined | |
| if term not in stop_words | |
| and len(term.split()) <= 2 | |
| and len(term) > 3] | |
| # Count and return top terms | |
| counter = Counter(filtered) | |
| return [term for term, freq in counter.most_common(top_n)] | |
| def clean_text_for_filename(text: str) -> str: | |
| """Clean text for use in filenames.""" | |
| # Remove special characters | |
| text = text.lower() | |
| text = re.sub(r'[^\w\s-]', '', text) | |
| # Remove common unhelpful words | |
| stop_words = set([ | |
| 'the', 'and', 'for', 'with', 'this', 'that', 'what', 'which', | |
| 'where', 'when', 'why', 'how', 'who', 'whom', 'whose', 'ai', | |
| 'library', 'function', 'method', 'class', 'object', 'variable' | |
| ]) | |
| words = text.split() | |
| filtered = [w for w in words if len(w) > 3 and w not in stop_words] | |
| return '_'.join(filtered)[:200] | |
| def generate_filename(prompt: str, response: str, file_type: str = "md", | |
| max_length: int = 200) -> str: | |
| """Generate descriptive filename from content.""" | |
| # Get timestamp prefix | |
| prefix = format_timestamp_prefix() + "_" | |
| # Extract informative terms | |
| combined_text = (prompt + " " + response)[:500] | |
| info_terms = get_high_info_terms(combined_text, top_n=5) | |
| # Get content snippet | |
| snippet = (prompt[:40] + " " + response[:40]).strip() | |
| snippet_cleaned = clean_text_for_filename(snippet) | |
| # Combine and deduplicate parts | |
| name_parts = info_terms + [snippet_cleaned] | |
| seen = set() | |
| unique_parts = [] | |
| for part in name_parts: | |
| if part not in seen: | |
| seen.add(part) | |
| unique_parts.append(part) | |
| # Create final filename | |
| full_name = '_'.join(unique_parts).strip('_') | |
| leftover_chars = max_length - len(prefix) - len(file_type) - 1 | |
| if len(full_name) > leftover_chars: | |
| full_name = full_name[:leftover_chars] | |
| return f"{prefix}{full_name}.{file_type}" | |
| def create_zip_of_files(md_files: List[str], mp3_files: List[str], | |
| wav_files: List[str], input_question: str) -> Optional[str]: | |
| """Create zip archive of files with optimization.""" | |
| with PerformanceTimer("zip_creation"): | |
| # Filter out readme and empty files | |
| md_files = [f for f in md_files | |
| if os.path.basename(f).lower() != 'readme.md' | |
| and os.path.getsize(f) > 0] | |
| all_files = md_files + mp3_files + wav_files | |
| if not all_files: | |
| return None | |
| try: | |
| # Generate zip name | |
| all_content = [] | |
| for f in all_files: | |
| if f.endswith('.md'): | |
| with open(f, 'r', encoding='utf-8') as file: | |
| all_content.append(file.read()) | |
| elif f.endswith(('.mp3', '.wav')): | |
| basename = os.path.splitext(os.path.basename(f))[0] | |
| all_content.append(basename.replace('_', ' ')) | |
| all_content.append(input_question) | |
| combined_content = " ".join(all_content) | |
| info_terms = get_high_info_terms(combined_content, top_n=10) | |
| timestamp = format_timestamp_prefix() | |
| name_text = '-'.join(term for term in info_terms[:5]) | |
| zip_name = f"archive_{timestamp}_{name_text[:50]}.zip" | |
| # Create zip file | |
| with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as z: | |
| for f in all_files: | |
| z.write(f, os.path.basename(f)) | |
| return zip_name | |
| except Exception as e: | |
| st.error(f"Error creating zip archive: {str(e)}") | |
| return None | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 6. OPTIMIZED AI LOOKUP & PROCESSING | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def perform_ai_lookup(q: str, vocal_summary: bool = True, | |
| extended_refs: bool = False, | |
| titles_summary: bool = True, | |
| full_audio: bool = False) -> Tuple[str, Dict[str, float]]: | |
| """Main AI lookup routine with performance optimization.""" | |
| with PerformanceTimer("total_lookup") as total_timer: | |
| timings = {} | |
| # Add operation controls if not present | |
| if 'operation_controls' not in st.session_state: | |
| st.sidebar.markdown("### π§ Operation Controls") | |
| st.session_state['enable_claude'] = st.sidebar.checkbox( | |
| "Enable Claude Search", | |
| value=st.session_state['enable_claude'] | |
| ) | |
| st.session_state['enable_audio'] = st.sidebar.checkbox( | |
| "Generate Audio", | |
| value=st.session_state['enable_audio'] | |
| ) | |
| st.session_state['enable_download'] = st.sidebar.checkbox( | |
| "Create Download Links", | |
| value=st.session_state['enable_download'] | |
| ) | |
| st.session_state['operation_controls'] = True | |
| result = "" | |
| # 1. Claude API (if enabled) | |
| if st.session_state['enable_claude']: | |
| with PerformanceTimer("claude_api") as claude_timer: | |
| try: | |
| client = anthropic.Anthropic(api_key=anthropic_key) | |
| response = client.messages.create( | |
| model="claude-3-sonnet-20240229", | |
| max_tokens=1000, | |
| messages=[{"role": "user", "content": q}] | |
| ) | |
| st.write("Claude's reply π§ :") | |
| st.markdown(response.content[0].text) | |
| result = response.content[0].text | |
| timings['claude_api'] = time.time() - claude_timer.start_time | |
| except Exception as e: | |
| st.error(f"Error with Claude API: {str(e)}") | |
| result = "Error occurred during Claude API call" | |
| timings['claude_api'] = 0 | |
| # 2. Async save and audio generation | |
| async def process_results(): | |
| with PerformanceTimer("results_processing") as proc_timer: | |
| md_file, audio_file, md_time, audio_time = await async_save_qa_with_audio( | |
| q, result | |
| ) | |
| timings['markdown_save'] = md_time | |
| timings['audio_generation'] = audio_time | |
| if audio_file and st.session_state['enable_audio']: | |
| st.subheader("π Main Response Audio") | |
| st.audio(audio_file) | |
| if st.session_state['enable_download']: | |
| st.markdown( | |
| create_download_link_with_cache( | |
| audio_file, | |
| st.session_state['audio_format'] | |
| ), | |
| unsafe_allow_html=True | |
| ) | |
| # Run async operations | |
| asyncio.run(process_results()) | |
| # 3. Arxiv RAG with performance tracking | |
| if st.session_state['enable_claude']: | |
| with PerformanceTimer("arxiv_rag") as rag_timer: | |
| try: | |
| st.write('Running Arxiv RAG with Claude inputs.') | |
| client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
| refs = client.predict( | |
| q, | |
| 10, | |
| "Semantic Search", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| api_name="/update_with_rag_md" | |
| )[0] | |
| timings['arxiv_rag'] = time.time() - rag_timer.start_time | |
| # Process papers asynchronously | |
| papers = parse_arxiv_refs(refs) | |
| if papers: | |
| with PerformanceTimer("paper_processing") as paper_timer: | |
| async def process_papers(): | |
| # Create minimal links page | |
| paper_links = create_paper_links_md(papers) | |
| links_file = create_file(q, paper_links, "md") | |
| st.markdown(paper_links) | |
| # Generate audio and display papers | |
| await create_paper_audio_files(papers, q) | |
| display_papers(papers, get_marquee_settings()) | |
| display_papers_in_sidebar(papers) | |
| asyncio.run(process_papers()) | |
| timings['paper_processing'] = time.time() - paper_timer.start_time | |
| else: | |
| st.warning("No papers found in the response.") | |
| except Exception as e: | |
| st.error(f"Error during Arxiv RAG: {str(e)}") | |
| timings['arxiv_rag'] = 0 | |
| return result, timings | |
| def process_voice_input(text: str): | |
| """Process voice input with enhanced error handling and feedback.""" | |
| if not text: | |
| st.warning("Please provide some input text.") | |
| return | |
| with PerformanceTimer("voice_processing"): | |
| try: | |
| st.subheader("π Search Results") | |
| result, timings = perform_ai_lookup( | |
| text, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=True | |
| ) | |
| # Save results | |
| md_file, audio_file = save_qa_with_audio(text, result) | |
| # Display results | |
| st.subheader("π Generated Files") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.write(f"π Markdown: {os.path.basename(md_file)}") | |
| st.markdown(get_download_link(md_file, "md"), unsafe_allow_html=True) | |
| with col2: | |
| if audio_file: | |
| st.write(f"π΅ Audio: {os.path.basename(audio_file)}") | |
| play_and_download_audio( | |
| audio_file, | |
| st.session_state['audio_format'] | |
| ) | |
| except Exception as e: | |
| st.error(f"Error processing voice input: {str(e)}") | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 7. SIDEBAR AND FILE HISTORY | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def display_file_history_in_sidebar(): | |
| """Display file history with enhanced organization and filtering.""" | |
| with PerformanceTimer("file_history"): | |
| st.sidebar.markdown("---") | |
| st.sidebar.markdown("### π File History") | |
| # Gather all files | |
| md_files = glob.glob("*.md") | |
| mp3_files = glob.glob("*.mp3") | |
| wav_files = glob.glob("*.wav") | |
| all_files = md_files + mp3_files + wav_files | |
| if not all_files: | |
| st.sidebar.write("No files found.") | |
| return | |
| # Add file management controls | |
| col1, col2 = st.sidebar.columns(2) | |
| with col1: | |
| if st.button("π Delete All"): | |
| try: | |
| for f in all_files: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| st.success("All files deleted successfully.") | |
| except Exception as e: | |
| st.error(f"Error deleting files: {str(e)}") | |
| with col2: | |
| if st.button("β¬οΈ Zip All"): | |
| zip_name = create_zip_of_files( | |
| md_files, | |
| mp3_files, | |
| wav_files, | |
| st.session_state.get('last_query', '') | |
| ) | |
| if zip_name: | |
| st.sidebar.markdown( | |
| get_download_link(zip_name, "zip"), | |
| unsafe_allow_html=True | |
| ) | |
| # Add file filtering options | |
| st.sidebar.markdown("### π Filter Files") | |
| file_search = st.sidebar.text_input("Search files:", "") | |
| file_type_filter = st.sidebar.multiselect( | |
| "File types:", | |
| ["Markdown", "Audio"], | |
| default=["Markdown", "Audio"] | |
| ) | |
| # Sort files by modification time | |
| all_files.sort(key=os.path.getmtime, reverse=True) | |
| # Filter files based on search and type | |
| filtered_files = [] | |
| for f in all_files: | |
| if file_search.lower() in f.lower(): | |
| ext = os.path.splitext(f)[1].lower() | |
| if (("Markdown" in file_type_filter and ext == ".md") or | |
| ("Audio" in file_type_filter and ext in [".mp3", ".wav"])): | |
| filtered_files.append(f) | |
| # Display filtered files | |
| for f in filtered_files: | |
| fname = os.path.basename(f) | |
| ext = os.path.splitext(fname)[1].lower().strip('.') | |
| emoji = FILE_EMOJIS.get(ext, 'π¦') | |
| # Get file metadata | |
| mod_time = datetime.fromtimestamp(os.path.getmtime(f)) | |
| time_str = mod_time.strftime("%Y-%m-%d %H:%M:%S") | |
| file_size = os.path.getsize(f) / 1024 # Size in KB | |
| with st.sidebar.expander(f"{emoji} {fname}"): | |
| st.write(f"**Modified:** {time_str}") | |
| st.write(f"**Size:** {file_size:.1f} KB") | |
| if ext == "md": | |
| try: | |
| with open(f, "r", encoding="utf-8") as file_in: | |
| snippet = file_in.read(200).replace("\n", " ") | |
| if len(snippet) == 200: | |
| snippet += "..." | |
| st.write(snippet) | |
| st.markdown( | |
| get_download_link(f, file_type="md"), | |
| unsafe_allow_html=True | |
| ) | |
| except Exception as e: | |
| st.error(f"Error reading markdown file: {str(e)}") | |
| elif ext in ["mp3", "wav"]: | |
| st.audio(f) | |
| st.markdown( | |
| get_download_link(f, file_type=ext), | |
| unsafe_allow_html=True | |
| ) | |
| else: | |
| st.markdown(get_download_link(f), unsafe_allow_html=True) | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| # 8. MAIN APPLICATION | |
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| def main(): | |
| """Main application entry point with enhanced UI and error handling.""" | |
| try: | |
| # 1. Setup marquee UI in sidebar | |
| update_marquee_settings_ui() | |
| marquee_settings = get_marquee_settings() | |
| # 2. Display welcome marquee | |
| display_marquee( | |
| st.session_state['marquee_content'], | |
| {**marquee_settings, "font-size": "28px", "lineHeight": "50px"}, | |
| key_suffix="welcome" | |
| ) | |
| # 3. Main action tabs | |
| tab_main = st.radio( | |
| "Action:", | |
| ["π€ Voice", "πΈ Media", "π ArXiv", "π Editor"], | |
| horizontal=True | |
| ) | |
| # Custom component usage | |
| mycomponent = components.declare_component( | |
| "mycomponent", | |
| path="mycomponent" | |
| ) | |
| val = mycomponent(my_input_value="Hello") | |
| if val: | |
| # Process input value | |
| val_stripped = val.replace('\\n', ' ') | |
| edited_input = st.text_area( | |
| "βοΈ Edit Input:", | |
| value=val_stripped, | |
| height=100 | |
| ) | |
| # Model selection and options | |
| run_option = st.selectbox("Model:", ["Arxiv"]) | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| #autorun = st.checkbox("β AutoRun", value=True) | |
| autorun = st.checkbox("β AutoRun", value=False) | |
| with col2: | |
| full_audio = st.checkbox("π FullAudio", value=False) | |
| # Check for input changes | |
| input_changed = (val != st.session_state.old_val) | |
| if autorun and input_changed: | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input | |
| result, timings = perform_ai_lookup( | |
| edited_input, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=full_audio | |
| ) | |
| # Display performance metrics | |
| display_performance_metrics(timings) | |
| else: | |
| if st.button("βΆ Run"): | |
| st.session_state.old_val = val | |
| st.session_state.last_query = edited_input | |
| result, timings = perform_ai_lookup( | |
| edited_input, | |
| vocal_summary=True, | |
| extended_refs=False, | |
| titles_summary=True, | |
| full_audio=full_audio | |
| ) | |
| # Display performance metrics | |
| display_performance_metrics(timings) | |
| # Tab-specific content | |
| if tab_main == "π ArXiv": | |
| display_arxiv_tab() | |
| elif tab_main == "π€ Voice": | |
| display_voice_tab() | |
| elif tab_main == "πΈ Media": | |
| display_media_tab() | |
| elif tab_main == "π Editor": | |
| display_editor_tab() | |
| # Display file history | |
| display_file_history_in_sidebar() | |
| # Apply styling | |
| apply_custom_styling() | |
| # Check for rerun | |
| if st.session_state.should_rerun: | |
| st.session_state.should_rerun = False | |
| st.rerun() | |
| except Exception as e: | |
| st.error(f"An error occurred in the main application: {str(e)}") | |
| st.info("Please try refreshing the page or contact support if the issue persists.") | |
| if __name__ == "__main__": | |
| main() |