Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -210,62 +210,33 @@ def search_glossary(query):
|
|
| 210 |
all_results = ""
|
| 211 |
st.markdown(f"- {query}")
|
| 212 |
|
| 213 |
-
|
| 214 |
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
| 215 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
| 216 |
-
|
| 217 |
-
# π Run 1 - ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
| 218 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 219 |
response2 = client.predict(
|
| 220 |
message=query, # str in 'parameter_13' Textbox component
|
| 221 |
-
llm_results_use=
|
| 222 |
database_choice="Semantic Search",
|
| 223 |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
| 224 |
api_name="/update_with_rag_md"
|
| 225 |
)
|
| 226 |
-
st.
|
|
|
|
| 227 |
|
| 228 |
-
|
| 229 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
| 230 |
-
|
|
|
|
| 231 |
result = client.predict(
|
| 232 |
prompt=query,
|
| 233 |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
| 234 |
stream_outputs=True,
|
| 235 |
api_name="/ask_llm"
|
| 236 |
)
|
|
|
|
| 237 |
st.code(result, language="python", line_numbers=True)
|
| 238 |
-
|
| 239 |
-
response1 = client.predict(
|
| 240 |
-
query,
|
| 241 |
-
10,
|
| 242 |
-
"Semantic Search - up to 10 Mar 2024", # Search Source Dropdown component
|
| 243 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1", # LLM Model Dropdown component
|
| 244 |
-
api_name="/update_with_rag_md"
|
| 245 |
-
)
|
| 246 |
-
st.code(response1[0], language="python", line_numbers=True, wrap_lines=False)
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
# ArXiv searcher - Paper Summary & Ask LLM
|
| 250 |
-
# client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 251 |
|
| 252 |
-
response1 = client.predict(
|
| 253 |
-
message=query,
|
| 254 |
-
llm_results_use=5,
|
| 255 |
-
database_choice=database_choice,
|
| 256 |
-
llm_model_picked=model_choice,
|
| 257 |
-
api_name="/update_with_rag_md"
|
| 258 |
-
)
|
| 259 |
-
st.code(response1, language="python", line_numbers=True, wrap_lines=False)
|
| 260 |
-
|
| 261 |
-
response2 = client.predict(
|
| 262 |
-
prompt=query,
|
| 263 |
-
llm_model_picked=model_choice,
|
| 264 |
-
stream_outputs=True,
|
| 265 |
-
api_name="/ask_llm"
|
| 266 |
-
)
|
| 267 |
-
st.code(response2, language="python", line_numbers=True, wrap_lines=False)
|
| 268 |
-
|
| 269 |
# Aggregate hyperlinks and show with emojis
|
| 270 |
hyperlinks = extract_hyperlinks([response1, response2])
|
| 271 |
st.markdown("### π Aggregated Hyperlinks")
|
|
@@ -277,60 +248,10 @@ def search_glossary(query):
|
|
| 277 |
st.code(f"Response 1: \n{format_with_line_numbers(response1)}\n\nResponse 2: \n{format_with_line_numbers(response2)}", language="json")
|
| 278 |
|
| 279 |
# Save both responses to Cosmos DB
|
| 280 |
-
save_to_cosmos_db(query,
|
| 281 |
|
| 282 |
|
| 283 |
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
# π Search Glossary function
|
| 287 |
-
def search_glossaryv1(query):
|
| 288 |
-
# π΅οΈββοΈ Searching the glossary for: query
|
| 289 |
-
all_results = ""
|
| 290 |
-
st.markdown(f"- {query}")
|
| 291 |
-
|
| 292 |
-
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
| 293 |
-
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
| 294 |
-
|
| 295 |
-
# π Run 1 - ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
| 296 |
-
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 297 |
-
response2 = client.predict(
|
| 298 |
-
message=query, # str in 'parameter_13' Textbox component
|
| 299 |
-
llm_results_use=5,
|
| 300 |
-
database_choice="Semantic Search",
|
| 301 |
-
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
| 302 |
-
api_name="/update_with_rag_md"
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
| 306 |
-
|
| 307 |
-
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 308 |
-
result = client.predict(
|
| 309 |
-
prompt=query,
|
| 310 |
-
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
| 311 |
-
stream_outputs=True,
|
| 312 |
-
api_name="/ask_llm"
|
| 313 |
-
)
|
| 314 |
-
st.write('π Run of Multi-Agent System Paper Summary Spec is Complete')
|
| 315 |
-
st.markdown(response2)
|
| 316 |
-
|
| 317 |
-
# ArXiv searcher ~-<>-~ Paper References - Update with RAG
|
| 318 |
-
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 319 |
-
response1 = client.predict(
|
| 320 |
-
query,
|
| 321 |
-
10,
|
| 322 |
-
"Semantic Search - up to 10 Mar 2024", # Search Source Dropdown component
|
| 323 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1", # LLM Model Dropdown component
|
| 324 |
-
api_name="/update_with_rag_md"
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
#st.write('π Run of Multi-Agent System Paper References is Complete')
|
| 330 |
-
#responseall = response2 + response1[0] + response1[1]
|
| 331 |
-
#st.markdown(responseall)
|
| 332 |
-
return responseall
|
| 333 |
-
|
| 334 |
# π Function to process text input
|
| 335 |
def process_text(text_input):
|
| 336 |
if text_input:
|
|
|
|
| 210 |
all_results = ""
|
| 211 |
st.markdown(f"- {query}")
|
| 212 |
|
| 213 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
| 214 |
#database_choice Literal['Semantic Search', 'Arxiv Search - Latest - (EXPERIMENTAL)'] Default: "Semantic Search"
|
| 215 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
| 216 |
+
|
|
|
|
| 217 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
| 218 |
response2 = client.predict(
|
| 219 |
message=query, # str in 'parameter_13' Textbox component
|
| 220 |
+
llm_results_use=10,
|
| 221 |
database_choice="Semantic Search",
|
| 222 |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
| 223 |
api_name="/update_with_rag_md"
|
| 224 |
)
|
| 225 |
+
st.markdown(response2)
|
| 226 |
+
st.code(response2, language="python", line_numbers=True, wrap_lines=True)
|
| 227 |
|
|
|
|
| 228 |
#llm_model_picked Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] Default: "mistralai/Mistral-7B-Instruct-v0.2"
|
| 229 |
+
|
| 230 |
+
# π ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM
|
| 231 |
result = client.predict(
|
| 232 |
prompt=query,
|
| 233 |
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
|
| 234 |
stream_outputs=True,
|
| 235 |
api_name="/ask_llm"
|
| 236 |
)
|
| 237 |
+
st.markdown(result)
|
| 238 |
st.code(result, language="python", line_numbers=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
# Aggregate hyperlinks and show with emojis
|
| 241 |
hyperlinks = extract_hyperlinks([response1, response2])
|
| 242 |
st.markdown("### π Aggregated Hyperlinks")
|
|
|
|
| 248 |
st.code(f"Response 1: \n{format_with_line_numbers(response1)}\n\nResponse 2: \n{format_with_line_numbers(response2)}", language="json")
|
| 249 |
|
| 250 |
# Save both responses to Cosmos DB
|
| 251 |
+
save_to_cosmos_db(query, response2, result)
|
| 252 |
|
| 253 |
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
# π Function to process text input
|
| 256 |
def process_text(text_input):
|
| 257 |
if text_input:
|