Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import tensorflow as tf
|
| 3 |
-
import transformers
|
| 4 |
-
|
| 5 |
-
|
| 6 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
import firebase_admin
|
| 10 |
from firebase_admin import credentials
|
| 11 |
from firebase_admin import firestore
|
| 12 |
import datetime
|
|
|
|
|
|
|
| 13 |
|
| 14 |
import tempfile
|
| 15 |
from typing import Optional
|
| 16 |
import numpy as np
|
| 17 |
from TTS.utils.manage import ModelManager
|
| 18 |
from TTS.utils.synthesizer import Synthesizer
|
| 19 |
-
|
| 20 |
-
import io, base64
|
| 21 |
-
import mediapy
|
| 22 |
-
import os
|
| 23 |
-
import sys
|
| 24 |
-
|
| 25 |
-
from PIL import Image
|
| 26 |
-
from huggingface_hub import snapshot_download
|
| 27 |
|
| 28 |
|
| 29 |
# firestore singleton is a cached multiuser instance to persist shared crowdsource memory
|
|
@@ -39,7 +37,31 @@ db = get_db_firestore()
|
|
| 39 |
|
| 40 |
# create ASR ML pipeline
|
| 41 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# create Text Classification pipeline
|
| 45 |
classifier = pipeline("text-classification")
|
|
@@ -145,24 +167,27 @@ def generate_interpolation(gallery):
|
|
| 145 |
demo = gr.Blocks()
|
| 146 |
|
| 147 |
with demo:
|
| 148 |
-
|
| 149 |
-
# Left column (inputs)
|
| 150 |
-
# with gr.Column():
|
| 151 |
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
| 152 |
text = gr.Textbox()
|
| 153 |
label = gr.Label()
|
| 154 |
saved = gr.Textbox()
|
| 155 |
-
savedAll = gr.Textbox()
|
| 156 |
-
|
|
|
|
|
|
|
| 157 |
b1 = gr.Button("Recognize Speech")
|
| 158 |
b2 = gr.Button("Classify Sentiment")
|
| 159 |
b3 = gr.Button("Save Speech to Text")
|
| 160 |
b4 = gr.Button("Retrieve All")
|
| 161 |
-
|
|
|
|
| 162 |
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
| 163 |
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
| 164 |
b3.click(upsert, inputs=text, outputs=saved)
|
| 165 |
b4.click(selectall, inputs=text, outputs=savedAll)
|
|
|
|
|
|
|
| 166 |
|
| 167 |
with gr.Row():
|
| 168 |
# Left column (inputs)
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
+
import io, base64
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
import mediapy
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
from huggingface_hub import snapshot_download
|
| 11 |
|
| 12 |
+
import streamlit as st
|
| 13 |
import firebase_admin
|
| 14 |
from firebase_admin import credentials
|
| 15 |
from firebase_admin import firestore
|
| 16 |
import datetime
|
| 17 |
+
from transformers import pipeline
|
| 18 |
+
import gradio as gr
|
| 19 |
|
| 20 |
import tempfile
|
| 21 |
from typing import Optional
|
| 22 |
import numpy as np
|
| 23 |
from TTS.utils.manage import ModelManager
|
| 24 |
from TTS.utils.synthesizer import Synthesizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
# firestore singleton is a cached multiuser instance to persist shared crowdsource memory
|
|
|
|
| 37 |
|
| 38 |
# create ASR ML pipeline
|
| 39 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
| 40 |
+
|
| 41 |
+
MODEL_NAMES = [
|
| 42 |
+
"en/ljspeech/tacotron2-DDC",
|
| 43 |
+
"en/ljspeech/glow-tts",
|
| 44 |
+
"en/ljspeech/speedy-speech-wn",
|
| 45 |
+
"en/ljspeech/vits",
|
| 46 |
+
"en/sam/tacotron-DDC",
|
| 47 |
+
"fr/mai/tacotron2-DDC",
|
| 48 |
+
"de/thorsten/tacotron2-DCA",
|
| 49 |
+
]
|
| 50 |
+
MODELS = {}
|
| 51 |
+
manager = ModelManager()
|
| 52 |
+
for MODEL_NAME in MODEL_NAMES:
|
| 53 |
+
print(f"downloading {MODEL_NAME}")
|
| 54 |
+
model_path, config_path, model_item = manager.download_model(f"tts_models/{MODEL_NAME}")
|
| 55 |
+
vocoder_name: Optional[str] = model_item["default_vocoder"]
|
| 56 |
+
vocoder_path = None
|
| 57 |
+
vocoder_config_path = None
|
| 58 |
+
if vocoder_name is not None:
|
| 59 |
+
vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name)
|
| 60 |
+
|
| 61 |
+
synthesizer = Synthesizer(
|
| 62 |
+
model_path, config_path, None, vocoder_path, vocoder_config_path,
|
| 63 |
+
)
|
| 64 |
+
MODELS[MODEL_NAME] = synthesizer
|
| 65 |
|
| 66 |
# create Text Classification pipeline
|
| 67 |
classifier = pipeline("text-classification")
|
|
|
|
| 167 |
demo = gr.Blocks()
|
| 168 |
|
| 169 |
with demo:
|
| 170 |
+
|
|
|
|
|
|
|
| 171 |
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
| 172 |
text = gr.Textbox()
|
| 173 |
label = gr.Label()
|
| 174 |
saved = gr.Textbox()
|
| 175 |
+
savedAll = gr.Textbox()
|
| 176 |
+
TTSchoice = gr.inputs.Radio( label="Pick a TTS Model", choices=MODEL_NAMES, )
|
| 177 |
+
audio = gr.Audio(label="Output", interactive=False)
|
| 178 |
+
|
| 179 |
b1 = gr.Button("Recognize Speech")
|
| 180 |
b2 = gr.Button("Classify Sentiment")
|
| 181 |
b3 = gr.Button("Save Speech to Text")
|
| 182 |
b4 = gr.Button("Retrieve All")
|
| 183 |
+
b5 = gr.Button("Read It Back Aloud")
|
| 184 |
+
|
| 185 |
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
| 186 |
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
| 187 |
b3.click(upsert, inputs=text, outputs=saved)
|
| 188 |
b4.click(selectall, inputs=text, outputs=savedAll)
|
| 189 |
+
b5.click(tts, inputs=[text,TTSchoice], outputs=audio)
|
| 190 |
+
|
| 191 |
|
| 192 |
with gr.Row():
|
| 193 |
# Left column (inputs)
|