Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,22 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
import io, base64
|
| 4 |
-
from PIL import Image
|
| 5 |
import numpy as np
|
| 6 |
import tensorflow as tf
|
| 7 |
import mediapy
|
| 8 |
import os
|
| 9 |
import sys
|
| 10 |
-
from huggingface_hub import snapshot_download
|
| 11 |
-
|
| 12 |
import streamlit as st
|
| 13 |
import firebase_admin
|
| 14 |
-
from firebase_admin import credentials
|
| 15 |
-
from firebase_admin import firestore
|
| 16 |
import datetime
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
@st.experimental_singleton
|
| 21 |
def get_db_firestore():
|
| 22 |
cred = credentials.Certificate('test.json')
|
|
@@ -24,16 +24,23 @@ def get_db_firestore():
|
|
| 24 |
db = firestore.client()
|
| 25 |
return db
|
| 26 |
|
| 27 |
-
#start
|
| 28 |
db = get_db_firestore()
|
|
|
|
|
|
|
| 29 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def transcribe(audio):
|
| 32 |
text = asr(audio)["text"]
|
| 33 |
return text
|
| 34 |
|
| 35 |
-
classifier = pipeline("text-classification")
|
| 36 |
-
|
| 37 |
def speech_to_text(speech):
|
| 38 |
text = asr(speech)["text"]
|
| 39 |
return text
|
|
@@ -67,50 +74,34 @@ def selectall(text):
|
|
| 67 |
r=(f'{doc.id} => {doc.to_dict()}')
|
| 68 |
doclist += r
|
| 69 |
return doclist
|
| 70 |
-
|
| 71 |
-
#demo = gr.Blocks()
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
#demo.launch(share=True)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# 1. GPT-J: Story Generation Pipeline
|
| 79 |
-
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")
|
| 80 |
-
|
| 81 |
-
# 2. LatentDiffusion: Latent Diffusion Interface
|
| 82 |
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion")
|
| 83 |
|
| 84 |
-
#
|
| 85 |
os.system("git clone https://github.com/google-research/frame-interpolation")
|
| 86 |
sys.path.append("frame-interpolation")
|
| 87 |
-
from eval import interpolator, util
|
| 88 |
-
|
| 89 |
ffmpeg_path = util.get_ffmpeg_path()
|
| 90 |
mediapy.set_ffmpeg(ffmpeg_path)
|
| 91 |
-
|
| 92 |
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
|
| 93 |
interpolator = interpolator.Interpolator(model, None)
|
| 94 |
|
|
|
|
| 95 |
def generate_story(choice, input_text):
|
| 96 |
query = "<BOS> <{0}> {1}".format(choice, input_text)
|
| 97 |
-
|
| 98 |
-
print(query)
|
| 99 |
generated_text = story_gen(query)
|
| 100 |
generated_text = generated_text[0]['generated_text']
|
| 101 |
generated_text = generated_text.split('> ')[2]
|
| 102 |
-
|
| 103 |
return generated_text
|
| 104 |
|
| 105 |
-
|
|
|
|
| 106 |
steps=50
|
| 107 |
width=256
|
| 108 |
height=256
|
| 109 |
num_images=4
|
| 110 |
diversity=6
|
| 111 |
-
image_bytes = image_gen(
|
| 112 |
-
|
| 113 |
-
# Algo from spaces/Gradio-Blocks/latent_gpt2_story/blob/main/app.py
|
| 114 |
generated_images = []
|
| 115 |
for image in image_bytes[1]:
|
| 116 |
image_str = image[0]
|
|
@@ -118,56 +109,44 @@ def generate_images(generated_text):
|
|
| 118 |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
| 119 |
img = Image.open(io.BytesIO(decoded_bytes))
|
| 120 |
generated_images.append(img)
|
| 121 |
-
|
| 122 |
return generated_images
|
| 123 |
|
|
|
|
| 124 |
def generate_interpolation(gallery):
|
| 125 |
times_to_interpolate = 4
|
| 126 |
-
|
| 127 |
generated_images = []
|
| 128 |
for image_str in gallery:
|
| 129 |
image_str = image_str.replace("data:image/png;base64,","")
|
| 130 |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
| 131 |
img = Image.open(io.BytesIO(decoded_bytes))
|
| 132 |
generated_images.append(img)
|
| 133 |
-
|
| 134 |
generated_images[0].save('frame_0.png')
|
| 135 |
generated_images[1].save('frame_1.png')
|
| 136 |
generated_images[2].save('frame_2.png')
|
| 137 |
generated_images[3].save('frame_3.png')
|
| 138 |
-
|
| 139 |
input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"]
|
| 140 |
-
|
| 141 |
frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator))
|
| 142 |
-
|
| 143 |
mediapy.write_video("out.mp4", frames, fps=15)
|
| 144 |
-
|
| 145 |
return "out.mp4"
|
| 146 |
-
|
| 147 |
-
|
| 148 |
|
| 149 |
demo = gr.Blocks()
|
| 150 |
|
| 151 |
with demo:
|
| 152 |
-
#audio_file = gr.Audio(type="filepath")
|
| 153 |
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
| 154 |
text = gr.Textbox()
|
| 155 |
label = gr.Label()
|
| 156 |
saved = gr.Textbox()
|
| 157 |
-
savedAll = gr.Textbox()
|
| 158 |
-
|
| 159 |
b1 = gr.Button("Recognize Speech")
|
| 160 |
b2 = gr.Button("Classify Sentiment")
|
| 161 |
b3 = gr.Button("Save Speech to Text")
|
| 162 |
b4 = gr.Button("Retrieve All")
|
| 163 |
-
|
| 164 |
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
| 165 |
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
| 166 |
b3.click(upsert, inputs=text, outputs=saved)
|
| 167 |
b4.click(selectall, inputs=text, outputs=savedAll)
|
| 168 |
|
| 169 |
with gr.Row():
|
| 170 |
-
|
| 171 |
# Left column (inputs)
|
| 172 |
with gr.Column():
|
| 173 |
input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre")
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import io, base64
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import tensorflow as tf
|
| 5 |
import mediapy
|
| 6 |
import os
|
| 7 |
import sys
|
|
|
|
|
|
|
| 8 |
import streamlit as st
|
| 9 |
import firebase_admin
|
|
|
|
|
|
|
| 10 |
import datetime
|
| 11 |
|
| 12 |
+
from transformers import pipeline
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from huggingface_hub import snapshot_download
|
| 15 |
+
from firebase_admin import credentials
|
| 16 |
+
from firebase_admin import firestore
|
| 17 |
+
from eval import interpolator, util
|
| 18 |
|
| 19 |
+
# firestore singleton is a cached multiuser instance to persist shared crowdsource memory
|
| 20 |
@st.experimental_singleton
|
| 21 |
def get_db_firestore():
|
| 22 |
cred = credentials.Certificate('test.json')
|
|
|
|
| 24 |
db = firestore.client()
|
| 25 |
return db
|
| 26 |
|
| 27 |
+
#start firestore singleton
|
| 28 |
db = get_db_firestore()
|
| 29 |
+
|
| 30 |
+
# create ASR ML pipeline
|
| 31 |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
| 32 |
|
| 33 |
+
# create Text Classification pipeline
|
| 34 |
+
classifier = pipeline("text-classification")
|
| 35 |
+
|
| 36 |
+
# create text generator pipeline
|
| 37 |
+
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")
|
| 38 |
+
|
| 39 |
+
# transcribe function
|
| 40 |
def transcribe(audio):
|
| 41 |
text = asr(audio)["text"]
|
| 42 |
return text
|
| 43 |
|
|
|
|
|
|
|
| 44 |
def speech_to_text(speech):
|
| 45 |
text = asr(speech)["text"]
|
| 46 |
return text
|
|
|
|
| 74 |
r=(f'{doc.id} => {doc.to_dict()}')
|
| 75 |
doclist += r
|
| 76 |
return doclist
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
# image generator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion")
|
| 80 |
|
| 81 |
+
# video generator
|
| 82 |
os.system("git clone https://github.com/google-research/frame-interpolation")
|
| 83 |
sys.path.append("frame-interpolation")
|
|
|
|
|
|
|
| 84 |
ffmpeg_path = util.get_ffmpeg_path()
|
| 85 |
mediapy.set_ffmpeg(ffmpeg_path)
|
|
|
|
| 86 |
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
|
| 87 |
interpolator = interpolator.Interpolator(model, None)
|
| 88 |
|
| 89 |
+
# story gen
|
| 90 |
def generate_story(choice, input_text):
|
| 91 |
query = "<BOS> <{0}> {1}".format(choice, input_text)
|
|
|
|
|
|
|
| 92 |
generated_text = story_gen(query)
|
| 93 |
generated_text = generated_text[0]['generated_text']
|
| 94 |
generated_text = generated_text.split('> ')[2]
|
|
|
|
| 95 |
return generated_text
|
| 96 |
|
| 97 |
+
# images gen
|
| 98 |
+
def generate_images(text):
|
| 99 |
steps=50
|
| 100 |
width=256
|
| 101 |
height=256
|
| 102 |
num_images=4
|
| 103 |
diversity=6
|
| 104 |
+
image_bytes = image_gen(text, steps, width, height, num_images, diversity)
|
|
|
|
|
|
|
| 105 |
generated_images = []
|
| 106 |
for image in image_bytes[1]:
|
| 107 |
image_str = image[0]
|
|
|
|
| 109 |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
| 110 |
img = Image.open(io.BytesIO(decoded_bytes))
|
| 111 |
generated_images.append(img)
|
|
|
|
| 112 |
return generated_images
|
| 113 |
|
| 114 |
+
# reductionism - interpolate 4 images - todo - unhardcode the pattern
|
| 115 |
def generate_interpolation(gallery):
|
| 116 |
times_to_interpolate = 4
|
|
|
|
| 117 |
generated_images = []
|
| 118 |
for image_str in gallery:
|
| 119 |
image_str = image_str.replace("data:image/png;base64,","")
|
| 120 |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
| 121 |
img = Image.open(io.BytesIO(decoded_bytes))
|
| 122 |
generated_images.append(img)
|
|
|
|
| 123 |
generated_images[0].save('frame_0.png')
|
| 124 |
generated_images[1].save('frame_1.png')
|
| 125 |
generated_images[2].save('frame_2.png')
|
| 126 |
generated_images[3].save('frame_3.png')
|
|
|
|
| 127 |
input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"]
|
|
|
|
| 128 |
frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator))
|
|
|
|
| 129 |
mediapy.write_video("out.mp4", frames, fps=15)
|
|
|
|
| 130 |
return "out.mp4"
|
|
|
|
|
|
|
| 131 |
|
| 132 |
demo = gr.Blocks()
|
| 133 |
|
| 134 |
with demo:
|
|
|
|
| 135 |
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
| 136 |
text = gr.Textbox()
|
| 137 |
label = gr.Label()
|
| 138 |
saved = gr.Textbox()
|
| 139 |
+
savedAll = gr.Textbox()
|
|
|
|
| 140 |
b1 = gr.Button("Recognize Speech")
|
| 141 |
b2 = gr.Button("Classify Sentiment")
|
| 142 |
b3 = gr.Button("Save Speech to Text")
|
| 143 |
b4 = gr.Button("Retrieve All")
|
|
|
|
| 144 |
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
| 145 |
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
| 146 |
b3.click(upsert, inputs=text, outputs=saved)
|
| 147 |
b4.click(selectall, inputs=text, outputs=savedAll)
|
| 148 |
|
| 149 |
with gr.Row():
|
|
|
|
| 150 |
# Left column (inputs)
|
| 151 |
with gr.Column():
|
| 152 |
input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre")
|