Spaces:
Runtime error
Runtime error
refactor
Browse files
app.py
CHANGED
|
@@ -1,39 +1,41 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
-
import torch
|
| 7 |
import rembg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from PIL import Image
|
| 9 |
-
from torchvision.transforms import v2
|
| 10 |
from pytorch_lightning import seed_everything
|
| 11 |
-
from
|
| 12 |
-
from einops import rearrange, repeat
|
| 13 |
from tqdm import tqdm
|
| 14 |
-
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
from src.utils.train_util import instantiate_from_config
|
| 17 |
-
from src.utils.camera_util import (
|
| 18 |
-
FOV_to_intrinsics,
|
| 19 |
-
get_zero123plus_input_cameras,
|
| 20 |
-
get_circular_camera_poses,
|
| 21 |
-
)
|
| 22 |
-
from src.utils.mesh_util import save_obj, save_glb
|
| 23 |
-
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
| 24 |
|
| 25 |
-
import tempfile
|
| 26 |
-
from functools import partial
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
| 34 |
-
"""
|
| 35 |
-
Get the rendering camera parameters.
|
| 36 |
-
"""
|
| 37 |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
| 38 |
if is_flexicubes:
|
| 39 |
cameras = torch.linalg.inv(c2ws)
|
|
@@ -46,89 +48,42 @@ def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexi
|
|
| 46 |
return cameras
|
| 47 |
|
| 48 |
|
| 49 |
-
def
|
| 50 |
-
|
| 51 |
-
os.
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
|
| 55 |
-
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
|
| 56 |
-
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
|
| 57 |
-
assert frame.min() >= 0 and frame.max() <= 255, \
|
| 58 |
-
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
|
| 59 |
-
frames.append(frame)
|
| 60 |
-
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
###############################################################################
|
| 64 |
-
# Configuration.
|
| 65 |
-
###############################################################################
|
| 66 |
-
|
| 67 |
-
import shutil
|
| 68 |
-
|
| 69 |
-
def find_cuda():
|
| 70 |
-
# Check if CUDA_HOME or CUDA_PATH environment variables are set
|
| 71 |
-
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
| 72 |
-
|
| 73 |
-
if cuda_home and os.path.exists(cuda_home):
|
| 74 |
-
return cuda_home
|
| 75 |
-
|
| 76 |
-
# Search for the nvcc executable in the system's PATH
|
| 77 |
-
nvcc_path = shutil.which('nvcc')
|
| 78 |
-
|
| 79 |
-
if nvcc_path:
|
| 80 |
-
# Remove the 'bin/nvcc' part to get the CUDA installation path
|
| 81 |
-
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
|
| 82 |
-
return cuda_path
|
| 83 |
-
|
| 84 |
-
return None
|
| 85 |
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
-
print(f"CUDA installation found at: {cuda_path}")
|
| 90 |
-
else:
|
| 91 |
-
print("CUDA installation not found")
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
device = torch.device('cuda')
|
| 102 |
-
|
| 103 |
-
# load diffusion model
|
| 104 |
-
print('Loading diffusion model ...')
|
| 105 |
-
pipeline = DiffusionPipeline.from_pretrained(
|
| 106 |
-
"sudo-ai/zero123plus-v1.2",
|
| 107 |
-
custom_pipeline="zero123plus",
|
| 108 |
-
torch_dtype=torch.float16,
|
| 109 |
-
)
|
| 110 |
-
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 111 |
-
pipeline.scheduler.config, timestep_spacing='trailing'
|
| 112 |
-
)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
| 117 |
-
pipeline.unet.load_state_dict(state_dict, strict=True)
|
| 118 |
|
| 119 |
-
pipeline = pipeline.to(device)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
state_dict =
|
| 126 |
-
state_dict =
|
| 127 |
-
model.load_state_dict(state_dict, strict=True)
|
| 128 |
|
| 129 |
-
model = model.to(device)
|
| 130 |
|
| 131 |
-
|
| 132 |
|
| 133 |
|
| 134 |
def check_input_image(input_image):
|
|
@@ -137,7 +92,6 @@ def check_input_image(input_image):
|
|
| 137 |
|
| 138 |
|
| 139 |
def preprocess(input_image, do_remove_background):
|
| 140 |
-
|
| 141 |
rembg_session = rembg.new_session() if do_remove_background else None
|
| 142 |
|
| 143 |
if do_remove_background:
|
|
@@ -147,19 +101,16 @@ def preprocess(input_image, do_remove_background):
|
|
| 147 |
return input_image
|
| 148 |
|
| 149 |
|
| 150 |
-
|
| 151 |
-
def generate_mvs(input_image, sample_steps, sample_seed):
|
| 152 |
-
|
| 153 |
seed_everything(sample_seed)
|
| 154 |
-
|
| 155 |
-
# sampling
|
| 156 |
z123_image = pipeline(
|
| 157 |
-
input_image,
|
| 158 |
num_inference_steps=sample_steps
|
| 159 |
).images[0]
|
| 160 |
|
| 161 |
show_image = np.asarray(z123_image, dtype=np.uint8)
|
| 162 |
-
show_image = torch.from_numpy(show_image)
|
| 163 |
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
| 164 |
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
| 165 |
show_image = Image.fromarray(show_image.numpy())
|
|
@@ -167,224 +118,147 @@ def generate_mvs(input_image, sample_steps, sample_seed):
|
|
| 167 |
return z123_image, show_image
|
| 168 |
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
-
|
| 174 |
-
if IS_FLEXICUBES:
|
| 175 |
model.init_flexicubes_geometry(device, use_renderer=False)
|
| 176 |
model = model.eval()
|
| 177 |
|
| 178 |
images = np.asarray(images, dtype=np.float32) / 255.0
|
| 179 |
-
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
|
| 180 |
-
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
|
| 181 |
|
| 182 |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
| 183 |
-
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=
|
| 184 |
|
| 185 |
images = images.unsqueeze(0).to(device)
|
| 186 |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
| 187 |
|
| 188 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
| 189 |
-
print(mesh_fpath)
|
| 190 |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
| 191 |
mesh_dirname = os.path.dirname(mesh_fpath)
|
| 192 |
-
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
| 193 |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
| 194 |
|
| 195 |
with torch.no_grad():
|
| 196 |
-
# get triplane
|
| 197 |
planes = model.forward_planes(images, input_cameras)
|
| 198 |
-
|
| 199 |
-
# # get video
|
| 200 |
-
# chunk_size = 20 if IS_FLEXICUBES else 1
|
| 201 |
-
# render_size = 384
|
| 202 |
-
|
| 203 |
-
# frames = []
|
| 204 |
-
# for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
| 205 |
-
# if IS_FLEXICUBES:
|
| 206 |
-
# frame = model.forward_geometry(
|
| 207 |
-
# planes,
|
| 208 |
-
# render_cameras[:, i:i+chunk_size],
|
| 209 |
-
# render_size=render_size,
|
| 210 |
-
# )['img']
|
| 211 |
-
# else:
|
| 212 |
-
# frame = model.synthesizer(
|
| 213 |
-
# planes,
|
| 214 |
-
# cameras=render_cameras[:, i:i+chunk_size],
|
| 215 |
-
# render_size=render_size,
|
| 216 |
-
# )['images_rgb']
|
| 217 |
-
# frames.append(frame)
|
| 218 |
-
# frames = torch.cat(frames, dim=1)
|
| 219 |
-
|
| 220 |
-
# images_to_video(
|
| 221 |
-
# frames[0],
|
| 222 |
-
# video_fpath,
|
| 223 |
-
# fps=30,
|
| 224 |
-
# )
|
| 225 |
-
|
| 226 |
-
# print(f"Video saved to {video_fpath}")
|
| 227 |
-
|
| 228 |
-
# get mesh
|
| 229 |
-
mesh_out = model.extract_mesh(
|
| 230 |
-
planes,
|
| 231 |
-
use_texture_map=False,
|
| 232 |
-
**infer_config,
|
| 233 |
-
)
|
| 234 |
|
| 235 |
vertices, faces, vertex_colors = mesh_out
|
| 236 |
vertices = vertices[:, [1, 2, 0]]
|
| 237 |
-
|
| 238 |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
| 239 |
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
| 240 |
-
|
| 241 |
-
print(f"Mesh saved to {mesh_fpath}")
|
| 242 |
|
| 243 |
return mesh_fpath, mesh_glb_fpath
|
| 244 |
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
@article{xu2024instantmesh,
|
| 266 |
-
title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models},
|
| 267 |
-
author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying},
|
| 268 |
-
journal={arXiv preprint arXiv:2404.07191},
|
| 269 |
-
year={2024}
|
| 270 |
-
}
|
| 271 |
-
```
|
| 272 |
-
|
| 273 |
-
📋 **License**
|
| 274 |
-
|
| 275 |
-
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.
|
| 276 |
-
|
| 277 |
-
📧 **Contact**
|
| 278 |
-
|
| 279 |
-
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
|
| 280 |
-
"""
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
with gr.Blocks() as demo:
|
| 284 |
-
gr.Markdown(_HEADER_)
|
| 285 |
-
with gr.Row(variant="panel"):
|
| 286 |
-
with gr.Column():
|
| 287 |
-
with gr.Row():
|
| 288 |
-
input_image = gr.Image(
|
| 289 |
-
label="Input Image",
|
| 290 |
-
image_mode="RGBA",
|
| 291 |
-
sources="upload",
|
| 292 |
-
#width=256,
|
| 293 |
-
#height=256,
|
| 294 |
-
type="pil",
|
| 295 |
-
elem_id="content_image",
|
| 296 |
-
)
|
| 297 |
-
processed_image = gr.Image(
|
| 298 |
-
label="Processed Image",
|
| 299 |
-
image_mode="RGBA",
|
| 300 |
-
#width=256,
|
| 301 |
-
#height=256,
|
| 302 |
-
type="pil",
|
| 303 |
-
interactive=False
|
| 304 |
-
)
|
| 305 |
-
with gr.Row():
|
| 306 |
-
with gr.Group():
|
| 307 |
-
do_remove_background = gr.Checkbox(
|
| 308 |
-
label="Remove Background", value=True
|
| 309 |
-
)
|
| 310 |
-
sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
|
| 311 |
-
|
| 312 |
-
sample_steps = gr.Slider(
|
| 313 |
-
label="Sample Steps",
|
| 314 |
-
minimum=30,
|
| 315 |
-
maximum=75,
|
| 316 |
-
value=75,
|
| 317 |
-
step=5
|
| 318 |
)
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
with gr.Row(variant="panel"):
|
| 324 |
-
gr.Examples(
|
| 325 |
-
examples=[
|
| 326 |
-
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
|
| 327 |
-
],
|
| 328 |
-
inputs=[input_image],
|
| 329 |
-
label="Examples",
|
| 330 |
-
cache_examples=False,
|
| 331 |
-
examples_per_page=16
|
| 332 |
-
)
|
| 333 |
-
|
| 334 |
-
with gr.Column():
|
| 335 |
-
|
| 336 |
-
with gr.Row():
|
| 337 |
-
|
| 338 |
-
with gr.Column():
|
| 339 |
-
mv_show_images = gr.Image(
|
| 340 |
-
label="Generated Multi-views",
|
| 341 |
type="pil",
|
| 342 |
-
width=379,
|
| 343 |
interactive=False
|
| 344 |
)
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
)
|
| 360 |
-
gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
|
| 361 |
-
with gr.Tab("GLB"):
|
| 362 |
-
output_model_glb = gr.Model3D(
|
| 363 |
-
label="Output Model (GLB Format)",
|
| 364 |
-
interactive=False,
|
| 365 |
-
)
|
| 366 |
-
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
|
| 367 |
-
|
| 368 |
-
with gr.Row():
|
| 369 |
-
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
| 370 |
-
|
| 371 |
-
gr.Markdown(_CITE_)
|
| 372 |
-
|
| 373 |
-
mv_images = gr.State()
|
| 374 |
-
|
| 375 |
-
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
| 376 |
-
fn=preprocess,
|
| 377 |
-
inputs=[input_image, do_remove_background],
|
| 378 |
-
outputs=[processed_image],
|
| 379 |
-
).success(
|
| 380 |
-
fn=generate_mvs,
|
| 381 |
-
inputs=[processed_image, sample_steps, sample_seed],
|
| 382 |
-
outputs=[mv_images, mv_show_images]
|
| 383 |
-
|
| 384 |
-
).success(
|
| 385 |
-
fn=make3d,
|
| 386 |
-
inputs=[mv_images],
|
| 387 |
-
outputs=[output_model_obj, output_model_glb]
|
| 388 |
-
)
|
| 389 |
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import tempfile
|
| 4 |
+
from functools import partial
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
import rembg
|
| 9 |
+
import torch
|
| 10 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
| 11 |
+
from einops import rearrange
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
from omegaconf import OmegaConf
|
| 14 |
from PIL import Image
|
|
|
|
| 15 |
from pytorch_lightning import seed_everything
|
| 16 |
+
from torchvision.transforms import v2
|
|
|
|
| 17 |
from tqdm import tqdm
|
|
|
|
| 18 |
|
| 19 |
+
from src.utils.camera_util import FOV_to_intrinsics, get_circular_camera_poses, get_zero123plus_input_cameras
|
| 20 |
+
from src.utils.infer_util import images_to_video, remove_background, resize_foreground
|
| 21 |
+
from src.utils.mesh_util import save_glb, save_obj
|
| 22 |
from src.utils.train_util import instantiate_from_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
def find_cuda():
|
| 26 |
+
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
|
| 27 |
+
if cuda_home and os.path.exists(cuda_home):
|
| 28 |
+
return cuda_home
|
| 29 |
|
| 30 |
+
nvcc_path = shutil.which('nvcc')
|
| 31 |
+
if nvcc_path:
|
| 32 |
+
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
|
| 33 |
+
return cuda_path
|
| 34 |
+
|
| 35 |
+
return None
|
| 36 |
|
| 37 |
|
| 38 |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
|
|
|
|
|
|
|
|
|
| 39 |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
| 40 |
if is_flexicubes:
|
| 41 |
cameras = torch.linalg.inv(c2ws)
|
|
|
|
| 48 |
return cameras
|
| 49 |
|
| 50 |
|
| 51 |
+
def load_models(config_path):
|
| 52 |
+
config = OmegaConf.load(config_path)
|
| 53 |
+
config_name = os.path.basename(config_path).replace('.yaml', '')
|
| 54 |
+
model_config = config.model_config
|
| 55 |
+
infer_config = config.infer_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
is_flexicubes = config_name.startswith('instant-mesh')
|
| 58 |
|
| 59 |
+
device = torch.device('cuda')
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 62 |
+
"sudo-ai/zero123plus-v1.2",
|
| 63 |
+
custom_pipeline="zero123plus",
|
| 64 |
+
torch_dtype=torch.float16,
|
| 65 |
+
)
|
| 66 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
| 67 |
+
pipeline.scheduler.config, timestep_spacing='trailing'
|
| 68 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
unet_ckpt_path = hf_hub_download(
|
| 71 |
+
repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
| 72 |
+
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
| 73 |
+
pipeline.unet.load_state_dict(state_dict, strict=True)
|
| 74 |
|
| 75 |
+
pipeline = pipeline.to(device)
|
| 76 |
|
| 77 |
+
model_ckpt_path = hf_hub_download(
|
| 78 |
+
repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
| 79 |
+
model = instantiate_from_config(model_config)
|
| 80 |
+
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
| 81 |
+
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
| 82 |
+
model.load_state_dict(state_dict, strict=True)
|
|
|
|
| 83 |
|
| 84 |
+
model = model.to(device)
|
| 85 |
|
| 86 |
+
return pipeline, model, is_flexicubes, infer_config
|
| 87 |
|
| 88 |
|
| 89 |
def check_input_image(input_image):
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
def preprocess(input_image, do_remove_background):
|
|
|
|
| 95 |
rembg_session = rembg.new_session() if do_remove_background else None
|
| 96 |
|
| 97 |
if do_remove_background:
|
|
|
|
| 101 |
return input_image
|
| 102 |
|
| 103 |
|
| 104 |
+
def generate_mvs(input_image, sample_steps, sample_seed, pipeline):
|
|
|
|
|
|
|
| 105 |
seed_everything(sample_seed)
|
| 106 |
+
|
|
|
|
| 107 |
z123_image = pipeline(
|
| 108 |
+
input_image,
|
| 109 |
num_inference_steps=sample_steps
|
| 110 |
).images[0]
|
| 111 |
|
| 112 |
show_image = np.asarray(z123_image, dtype=np.uint8)
|
| 113 |
+
show_image = torch.from_numpy(show_image)
|
| 114 |
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
| 115 |
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
| 116 |
show_image = Image.fromarray(show_image.numpy())
|
|
|
|
| 118 |
return z123_image, show_image
|
| 119 |
|
| 120 |
|
| 121 |
+
def make3d(images, model, is_flexicubes, infer_config):
|
| 122 |
+
device = torch.device('cuda')
|
| 123 |
|
| 124 |
+
if is_flexicubes:
|
|
|
|
| 125 |
model.init_flexicubes_geometry(device, use_renderer=False)
|
| 126 |
model = model.eval()
|
| 127 |
|
| 128 |
images = np.asarray(images, dtype=np.float32) / 255.0
|
| 129 |
+
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
|
| 130 |
+
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
|
| 131 |
|
| 132 |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
| 133 |
+
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=is_flexicubes).to(device)
|
| 134 |
|
| 135 |
images = images.unsqueeze(0).to(device)
|
| 136 |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
| 137 |
|
| 138 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
|
|
|
| 139 |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
| 140 |
mesh_dirname = os.path.dirname(mesh_fpath)
|
|
|
|
| 141 |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
| 142 |
|
| 143 |
with torch.no_grad():
|
|
|
|
| 144 |
planes = model.forward_planes(images, input_cameras)
|
| 145 |
+
mesh_out = model.extract_mesh(planes, use_texture_map=False, **infer_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
vertices, faces, vertex_colors = mesh_out
|
| 148 |
vertices = vertices[:, [1, 2, 0]]
|
| 149 |
+
|
| 150 |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
| 151 |
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
|
|
|
|
|
|
| 152 |
|
| 153 |
return mesh_fpath, mesh_glb_fpath
|
| 154 |
|
| 155 |
|
| 156 |
+
def launch_demo(config_path):
|
| 157 |
+
cuda_path = find_cuda()
|
| 158 |
+
if cuda_path:
|
| 159 |
+
print(f"CUDA installation found at: {cuda_path}")
|
| 160 |
+
else:
|
| 161 |
+
print("CUDA installation not found")
|
| 162 |
+
|
| 163 |
+
pipeline, model, is_flexicubes, infer_config = load_models(config_path)
|
| 164 |
+
|
| 165 |
+
with gr.Blocks() as demo:
|
| 166 |
+
with gr.Row(variant="panel"):
|
| 167 |
+
with gr.Column():
|
| 168 |
+
with gr.Row():
|
| 169 |
+
input_image = gr.Image(
|
| 170 |
+
label="Input Image",
|
| 171 |
+
image_mode="RGBA",
|
| 172 |
+
sources="upload",
|
| 173 |
+
type="pil",
|
| 174 |
+
elem_id="content_image",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
)
|
| 176 |
+
processed_image = gr.Image(
|
| 177 |
+
label="Processed Image",
|
| 178 |
+
image_mode="RGBA",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
type="pil",
|
|
|
|
| 180 |
interactive=False
|
| 181 |
)
|
| 182 |
+
with gr.Row():
|
| 183 |
+
with gr.Group():
|
| 184 |
+
do_remove_background = gr.Checkbox(
|
| 185 |
+
label="Remove Background", value=True
|
| 186 |
+
)
|
| 187 |
+
sample_seed = gr.Number(
|
| 188 |
+
value=42, label="Seed Value", precision=0)
|
| 189 |
+
|
| 190 |
+
sample_steps = gr.Slider(
|
| 191 |
+
label="Sample Steps",
|
| 192 |
+
minimum=30,
|
| 193 |
+
maximum=75,
|
| 194 |
+
value=75,
|
| 195 |
+
step=5
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
with gr.Row():
|
| 199 |
+
submit = gr.Button(
|
| 200 |
+
"Generate", elem_id="generate", variant="primary")
|
| 201 |
+
|
| 202 |
+
with gr.Row(variant="panel"):
|
| 203 |
+
gr.Examples(
|
| 204 |
+
examples=[
|
| 205 |
+
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
|
| 206 |
+
],
|
| 207 |
+
inputs=[input_image],
|
| 208 |
+
label="Examples",
|
| 209 |
+
cache_examples=False,
|
| 210 |
+
examples_per_page=16
|
| 211 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
with gr.Column():
|
| 214 |
+
with gr.Row():
|
| 215 |
+
with gr.Column():
|
| 216 |
+
mv_show_images = gr.Image(
|
| 217 |
+
label="Generated Multi-views",
|
| 218 |
+
type="pil",
|
| 219 |
+
width=379,
|
| 220 |
+
interactive=False
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
with gr.Row():
|
| 224 |
+
with gr.Tab("OBJ"):
|
| 225 |
+
output_model_obj = gr.Model3D(
|
| 226 |
+
label="Output Model (OBJ Format)",
|
| 227 |
+
interactive=False,
|
| 228 |
+
)
|
| 229 |
+
gr.Markdown(
|
| 230 |
+
"Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
|
| 231 |
+
with gr.Tab("GLB"):
|
| 232 |
+
output_model_glb = gr.Model3D(
|
| 233 |
+
label="Output Model (GLB Format)",
|
| 234 |
+
interactive=False,
|
| 235 |
+
)
|
| 236 |
+
gr.Markdown(
|
| 237 |
+
"Note: The model shown here has a darker appearance. Download to get correct results.")
|
| 238 |
+
|
| 239 |
+
with gr.Row():
|
| 240 |
+
gr.Markdown(
|
| 241 |
+
'''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
|
| 242 |
+
|
| 243 |
+
mv_images = gr.State()
|
| 244 |
+
|
| 245 |
+
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
| 246 |
+
fn=preprocess,
|
| 247 |
+
inputs=[input_image, do_remove_background],
|
| 248 |
+
outputs=[processed_image],
|
| 249 |
+
).success(
|
| 250 |
+
fn=generate_mvs,
|
| 251 |
+
inputs=[processed_image, sample_steps, sample_seed, pipeline],
|
| 252 |
+
outputs=[mv_images, mv_show_images]
|
| 253 |
+
).success(
|
| 254 |
+
fn=make3d,
|
| 255 |
+
inputs=[mv_images, model, is_flexicubes, infer_config],
|
| 256 |
+
outputs=[output_model_obj, output_model_glb]
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
demo.launch()
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
if __name__ == "__main__":
|
| 263 |
+
config_path = 'configs/instant-mesh-large.yaml'
|
| 264 |
+
launch_demo(config_path)
|