Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import numpy as np | |
| from scipy.sparse import csr_matrix | |
| import pandas as pd | |
| import time | |
| import graphviz | |
| # ----------------------------------------------------------------------------- | |
| # Title and Overview | |
| # ----------------------------------------------------------------------------- | |
| st.title("Cortical Column Theory: Self-Modifying Memory Systems") | |
| st.markdown(""" | |
| **Theory Overview:** | |
| This application demonstrates a model inspired by Cortical Column Theory where the ability to self-modify is paramount. | |
| - **Episodic Memory (E):** Represents short-term, conscious experience (~5–10 seconds) via introspective attention. | |
| - **Semantic Memory (K):** Cumulative knowledge built over time (Mass + Agency), enabling free energy formation. | |
| - **Neural Connectivity:** Modeled via sparse matrices to mimic voting neurons in cortical columns. | |
| - **Social Bonding:** Hierarchical connections—from teams to humanity—facilitate maximum free energy (or ‘love’) at a cellular level. | |
| These components interact in a dynamic system, much like how neocortical columns steer signals via voting neurons and dendritic excitement. | |
| """) | |
| # ----------------------------------------------------------------------------- | |
| # Create Tabs for Organized UI Sections | |
| # ----------------------------------------------------------------------------- | |
| tabs = st.tabs([ | |
| "Theory", | |
| "Neural Connectivity", | |
| "Concept Graph", | |
| "Interactive Components", | |
| "NPS Score", | |
| "Extra UI" | |
| ]) | |
| # ----------------------------------------------------------------------------- | |
| # Tab 1: Theory Explanation | |
| # ----------------------------------------------------------------------------- | |
| with tabs[0]: | |
| st.header("Cortical Column Theory") | |
| st.write(""" | |
| The central hypothesis is that life’s essential characteristic is its ability to self-modify. | |
| In this model: | |
| - **Episodic Memory (E)** functions as immediate, introspective attention over a 5–10 second window. | |
| - **Semantic Memory (K)** aggregates past experiences into a knowledge base, growing as new connections (graph edges) form. | |
| - **Free Energy** is produced as the system scales its pair bonds—from simple interactions (e.g., between two neurons) to complex networks (teams, organizations, and ultimately humanity). | |
| - **Love (❤️)** is conceptualized as the maximal connection, representing the highest free energy state and optimal bond formation. | |
| This theoretical framework abstracts how biological neural circuits might mirror self-coding systems in AI. | |
| """) | |
| # ----------------------------------------------------------------------------- | |
| # Tab 2: Neural Connectivity with Sparse Matrix | |
| # ----------------------------------------------------------------------------- | |
| with tabs[1]: | |
| st.header("Neural Connectivity Sparse Matrix") | |
| st.write("Below is a demonstration of a sparse matrix simulating neural connectivity within a cortical column:") | |
| # Create a random binary matrix (10 neurons, ~20% connectivity) | |
| size = 10 | |
| density = 0.2 | |
| random_matrix = np.random.binomial(1, density, size=(size, size)) | |
| sparse_matrix = csr_matrix(random_matrix) | |
| st.write("Sparse Matrix Representation:") | |
| st.write(sparse_matrix) | |
| st.write("Dense Matrix Representation:") | |
| st.write(random_matrix) | |
| # ----------------------------------------------------------------------------- | |
| # Tab 3: Emoji and Concept Graph UI | |
| # ----------------------------------------------------------------------------- | |
| with tabs[2]: | |
| st.header("Emoji and Concept Graph") | |
| st.write("Visualizing core concepts with emojis where each node represents a key component of the theory:") | |
| # Graphviz diagram using emojis and labels for key concepts. | |
| graph_source = """ | |
| digraph G { | |
| "Cortical Column 🧠" -> "Episodic Memory (E) ⏱️" [label="short-term"]; | |
| "Cortical Column 🧠" -> "Semantic Memory (K) 📚" [label="knowledge"]; | |
| "Episodic Memory (E) ⏱️" -> "Introspective Attention 🔍" [label="focus"]; | |
| "Semantic Memory (K) 📚" -> "Free Energy ⚡" [label="agency"]; | |
| "Free Energy ⚡" -> "Love ❤️" [label="bond"]; | |
| "Love ❤️" -> "Humanity 🌍" [label="connection"]; | |
| } | |
| """ | |
| st.graphviz_chart(graph_source) | |
| # ----------------------------------------------------------------------------- | |
| # Tab 4: Interactive UI Components | |
| # ----------------------------------------------------------------------------- | |
| with tabs[3]: | |
| st.header("Interactive Components Demonstration") | |
| st.subheader("Input and Selection") | |
| concept_input = st.text_input("Enter a concept label:", "Cortical Column Theory") | |
| time_window = st.slider("Select attention window (seconds)", 1, 10, 5) | |
| memory_type = st.radio("Select memory type", ("Episodic (E)", "Semantic (K)")) | |
| neural_component = st.selectbox("Choose a neural component", ["Neuron", "Synapse", "Dendrite", "Axon"]) | |
| additional_components = st.multiselect("Select additional components", ["Free Energy", "Agency", "Mass", "Bond"]) | |
| st.subheader("Activation Controls") | |
| if st.checkbox("Activate Introspective Attention"): | |
| st.write("Introspective Attention Activated!") | |
| if st.button("Execute Self-Modification Cycle"): | |
| st.write("**Self-Modification Cycle Executed**") | |
| st.write(f"Memory Type Selected: {memory_type}") | |
| st.write(f"Attention Window: {time_window} seconds") | |
| st.write(f"Neural Component: {neural_component}") | |
| st.write(f"Additional Components: {additional_components}") | |
| st.subheader("Media Components") | |
| st.image("https://via.placeholder.com/150.png?text=Neural+Network", caption="Neural Network Representation") | |
| # Note: The video below is a placeholder. | |
| st.video("https://www.youtube.com/watch?v=dQw4w9WgXcQ") | |
| st.subheader("Data and JSON Display") | |
| df = pd.DataFrame({ | |
| "Component": ["Neuron", "Synapse", "Dendrite", "Axon"], | |
| "Status": ["Active", "Active", "Inactive", "Active"] | |
| }) | |
| st.dataframe(df) | |
| sample_json = { | |
| "Episodic": {"Duration": f"{time_window} sec", "Type": memory_type}, | |
| "Semantic": {"Label": concept_input} | |
| } | |
| st.json(sample_json) | |
| st.subheader("File Upload and Color Picker") | |
| uploaded_file = st.file_uploader("Upload a configuration file") | |
| color = st.color_picker("Pick a highlight color", "#00f900") | |
| st.write("Selected Color:", color) | |
| st.subheader("Date and Time Inputs") | |
| date_input = st.date_input("Select a date") | |
| time_input = st.time_input("Select a time") | |
| st.write("Date:", date_input, "Time:", time_input) | |
| st.subheader("Progress Bar Simulation") | |
| progress_bar = st.progress(0) | |
| for percent_complete in range(101): | |
| progress_bar.progress(percent_complete) | |
| time.sleep(0.01) | |
| st.subheader("Metrics and Download Button") | |
| st.metric(label="Introspective Score", value=time_window*10, delta="+5") | |
| st.download_button("Download Configuration", data="configuration data", file_name="config.txt") | |
| # ----------------------------------------------------------------------------- | |
| # Tab 5: Self Reward Learning NPS Score | |
| # ----------------------------------------------------------------------------- | |
| with tabs[4]: | |
| st.header("Self Reward Learning NPS Score") | |
| nps_score = st.slider("Rate Self Reward Learning (0-10):", 0, 10, 5) | |
| if nps_score <= 6: | |
| nps_comment = "Needs Improvement - Consider refining self-modification algorithms." | |
| elif nps_score <= 8: | |
| nps_comment = "Good, but can be better - Fine-tuning required." | |
| else: | |
| nps_comment = "Excellent! - The system demonstrates robust self-reward learning." | |
| st.write(f"**NPS Score:** {nps_score} - {nps_comment}") | |
| # ----------------------------------------------------------------------------- | |
| # Tab 6: Extra UI Components for Extended Demonstration | |
| # ----------------------------------------------------------------------------- | |
| with tabs[5]: | |
| st.header("Extra UI Components") | |
| with st.expander("More Details"): | |
| st.write("Additional explanations or interactive widgets can be added here.") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.write("**Column 1:** Additional metrics or charts.") | |
| st.line_chart(np.random.randn(20, 1)) | |
| with col2: | |
| st.write("**Column 2:** Other interactive elements.") | |
| st.bar_chart(np.random.randn(20, 1)) | |