File size: 11,072 Bytes
a4bd75a d54232c a4bd75a fbfadd2 77685c6 fbfadd2 1824737 d54232c 1824737 fbfadd2 1824737 beb9eb9 fbfadd2 a4bd75a 7ef6739 a4bd75a 58f0729 a4bd75a 58f0729 a4bd75a 58f0729 a4bd75a 58f0729 a4bd75a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
#!/usr/bin/env python3
"""
SmolVLM2 Model Handler
Handles loading and inference with SmolVLM2-256M-Instruct model (smallest model for HuggingFace Spaces)
"""
import os
import tempfile
# Set cache directories to writable locations for HuggingFace Spaces
if 'HF_HOME' not in os.environ:
# Use /tmp which is guaranteed to be writable in containers
CACHE_DIR = os.path.join("/tmp", ".cache", "huggingface")
os.makedirs(CACHE_DIR, exist_ok=True)
os.makedirs(os.path.join("/tmp", ".cache", "torch"), exist_ok=True)
os.environ['HF_HOME'] = CACHE_DIR
os.environ['TRANSFORMERS_CACHE'] = CACHE_DIR
os.environ['HF_DATASETS_CACHE'] = CACHE_DIR
os.environ['TORCH_HOME'] = os.path.join("/tmp", ".cache", "torch")
os.environ['XDG_CACHE_HOME'] = os.path.join("/tmp", ".cache")
os.environ['HUGGINGFACE_HUB_CACHE'] = CACHE_DIR
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
import torch
from transformers import AutoModelForImageTextToText, AutoProcessor
from PIL import Image
import requests
from typing import List, Union, Optional
import logging
import warnings
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Suppress some warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
class SmolVLM2Handler:
"""Handler for SmolVLM2 model operations"""
def __init__(self, model_name: str = "HuggingFaceTB/SmolVLM2-256M-Video-Instruct", device: str = "auto"):
"""
Initialize SmolVLM2 model (2.2B version - better reasoning capabilities)
Args:
model_name: HuggingFace model identifier
device: Device to use ('auto', 'cpu', 'cuda', 'mps')
"""
self.model_name = model_name
self.device = self._get_device(device)
self.model = None
self.processor = None
logger.info(f"Initializing SmolVLM2 on device: {self.device}")
self._load_model()
def _get_device(self, device: str) -> str:
"""Determine the best device to use"""
if device == "auto":
if torch.cuda.is_available():
return "cuda"
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
return "mps" # Apple Silicon GPU
else:
return "cpu"
return device
def _load_model(self):
"""Load the model and processor"""
try:
logger.info("Loading processor...")
self.processor = AutoProcessor.from_pretrained(
self.model_name,
trust_remote_code=True
)
logger.info("Loading model...")
self.model = AutoModelForImageTextToText.from_pretrained(
self.model_name,
torch_dtype=torch.float16 if self.device != "cpu" else torch.float32,
trust_remote_code=True,
device_map=self.device if self.device != "cpu" else None
)
if self.device == "cpu":
self.model = self.model.to(self.device)
logger.info("β
Model loaded successfully!")
except Exception as e:
logger.error(f"β Failed to load model: {e}")
raise
def process_image(self, image_input: Union[str, Image.Image]) -> Image.Image:
"""
Process image input into PIL Image
Args:
image_input: File path, URL, or PIL Image
Returns:
PIL Image object
"""
if isinstance(image_input, str):
if image_input.startswith(('http://', 'https://')):
# Download from URL
response = requests.get(image_input)
image = Image.open(requests.get(image_input, stream=True).raw)
else:
# Load from file path
image = Image.open(image_input)
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("Image input must be file path, URL, or PIL Image")
# Convert to RGB if necessary
if image.mode != 'RGB':
image = image.convert('RGB')
return image
def generate_response(
self,
image_input: Union[str, Image.Image, List[Image.Image]],
text_prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.7,
do_sample: bool = True
) -> str:
"""
Generate response from image(s) and text prompt
Args:
image_input: Single image or list of images
text_prompt: Text prompt/question
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature
do_sample: Whether to use sampling
Returns:
Generated text response
"""
try:
# Process images
if isinstance(image_input, list):
images = [self.process_image(img) for img in image_input]
else:
images = [self.process_image(image_input)]
# Create proper conversation format for SmolVLM2
messages = [
{
"role": "user",
"content": [{"type": "text", "text": text_prompt}]
}
]
# Add image content to the message
for img in images:
messages[0]["content"].insert(0, {"type": "image", "image": img})
# Apply chat template
try:
prompt = self.processor.apply_chat_template(
messages,
add_generation_prompt=True
)
except:
# Fallback to simple format if chat template fails
image_tokens = "<image>" * len(images)
prompt = f"{image_tokens}{text_prompt}"
# Prepare inputs
inputs = self.processor(
images=images,
text=prompt,
return_tensors="pt"
).to(self.device)
# Generate response with robust parameters optimized for scoring
with torch.no_grad():
try:
generated_ids = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=0.7, # Higher temperature for more varied responses
do_sample=True, # Enable sampling for variety
top_p=0.85, # Slightly lower top_p for more focused responses
top_k=40, # Add top_k for better control
repetition_penalty=1.2, # Higher repetition penalty
pad_token_id=self.processor.tokenizer.eos_token_id,
eos_token_id=self.processor.tokenizer.eos_token_id,
use_cache=True
)
except RuntimeError as e:
if "probability tensor" in str(e) or "nan" in str(e) or "inf" in str(e):
# Retry with more conservative parameters
logger.warning("Retrying with conservative parameters due to probability tensor error")
generated_ids = self.model.generate(
**inputs,
max_new_tokens=min(max_new_tokens, 256),
temperature=0.5, # Still some variety
do_sample=True,
top_p=0.9,
pad_token_id=self.processor.tokenizer.eos_token_id,
eos_token_id=self.processor.tokenizer.eos_token_id,
use_cache=True
)
else:
raise
# Decode only the new tokens (skip input)
input_length = inputs['input_ids'].shape[1]
new_tokens = generated_ids[0][input_length:]
generated_text = self.processor.tokenizer.decode(
new_tokens,
skip_special_tokens=True
).strip()
# Return meaningful response even if empty
if not generated_text:
return "I can see the image but cannot generate a specific description."
return generated_text
except Exception as e:
logger.error(f"β Error during generation: {e}")
raise
def analyze_video_frames(
self,
frames: List[Image.Image],
question: str,
max_frames: int = 8
) -> str:
"""
Analyze video frames and answer questions
Args:
frames: List of PIL Image frames
question: Question about the video
max_frames: Maximum number of frames to process
Returns:
Analysis result
"""
# Sample frames if too many
if len(frames) > max_frames:
step = len(frames) // max_frames
sampled_frames = frames[::step][:max_frames]
else:
sampled_frames = frames
logger.info(f"Analyzing {len(sampled_frames)} frames")
# Create a simple prompt for video analysis (don't add image tokens manually)
video_prompt = f"These are frames from a video. {question}"
return self.generate_response(sampled_frames, video_prompt)
def get_model_info(self) -> dict:
"""Get information about the loaded model"""
return {
"model_name": self.model_name,
"device": self.device,
"model_type": type(self.model).__name__,
"processor_type": type(self.processor).__name__,
"loaded": self.model is not None and self.processor is not None
}
def test_model():
"""Test the model with a simple example"""
try:
# Initialize model
vlm = SmolVLM2Handler()
print("π Model Info:")
info = vlm.get_model_info()
for key, value in info.items():
print(f" {key}: {value}")
# Test with a simple image (create a test image)
test_image = Image.new('RGB', (224, 224), color='blue')
test_prompt = "What color is this image?"
print(f"\nπ Testing with prompt: '{test_prompt}'")
response = vlm.generate_response(test_image, test_prompt)
print(f"π Response: {response}")
print("\nβ
Model test completed successfully!")
except Exception as e:
print(f"β Model test failed: {e}")
raise
if __name__ == "__main__":
test_model()
|