File size: 22,468 Bytes
58f0729 bb657cb 58f0729 bb657cb 58f0729 7ef6739 58f0729 7ef6739 58f0729 7ef6739 58f0729 7ef6739 58f0729 7ef6739 58f0729 7ef6739 58f0729 bb657cb 58f0729 bb657cb 58f0729 7ef6739 58f0729 7ef6739 58f0729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
#!/usr/bin/env python3
import os
import json
import tempfile
import torch
import warnings
from pathlib import Path
from transformers import AutoProcessor, AutoModelForImageTextToText
import subprocess
import logging
import argparse
from typing import List, Tuple, Dict
# Suppress warnings
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", message=".*torchvision.*")
warnings.filterwarnings("ignore", message=".*torchcodec.*")
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def get_video_duration_seconds(video_path: str) -> float:
"""Use ffprobe to get video duration in seconds."""
cmd = [
"ffprobe",
"-v", "quiet",
"-print_format", "json",
"-show_format",
video_path
]
result = subprocess.run(cmd, capture_output=True, text=True)
info = json.loads(result.stdout)
return float(info["format"]["duration"])
class VideoHighlightDetector:
def __init__(
self,
model_path: str,
device: str = None,
batch_size: int = 8
):
# Auto-detect device if not specified
if device is None:
if torch.cuda.is_available():
device = "cuda"
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
self.device = device
self.batch_size = batch_size
# Initialize model and processor
self.processor = AutoProcessor.from_pretrained(model_path)
self.model = AutoModelForImageTextToText.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
# _attn_implementation="flash_attention_2"
).to(device)
# Store model path for reference
self.model_path = model_path
def analyze_video_content(self, video_path: str) -> str:
"""Analyze video content to determine its type and description."""
system_message = "You are a helpful assistant that can understand videos. Describe what type of video this is and what's happening in it."
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_message}]
},
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": "What type of video is this and what's happening in it? Be specific about the content type and general activities you observe."}
]
}
]
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
return self.processor.decode(outputs[0], skip_special_tokens=True).lower().split("assistant: ")[1]
def determine_highlights(self, video_description: str, prompt_num: int = 1) -> str:
"""Determine what constitutes highlights based on video description with different prompts."""
system_prompts = {
1: "You are a highlight editor. List archetypal dramatic moments that would make compelling highlights if they appear in the video. Each moment should be specific enough to be recognizable but generic enough to potentially exist in other videos of this type.",
2: "You are a helpful visual-language assistant that can understand videos and edit. You are tasked helping the user to create highlight reels for videos. Highlights should be rare and important events in the video in question."
}
user_prompts = {
1: "List potential highlight moments to look for in this video:",
2: "List dramatic moments that would make compelling highlights if they appear in the video. Each moment should be specific enough to be recognizable but generic enough to potentially exist in any video of this type:"
}
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_prompts[prompt_num]}]
},
{
"role": "user",
"content": [{"type": "text", "text": f"""Here is a description of a video:\n\n{video_description}\n\n{user_prompts[prompt_num]}"""}]
}
]
print(f"Using prompt {prompt_num} for highlight detection")
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
response = self.processor.decode(outputs[0], skip_special_tokens=True)
# Extract the actual response with better formatting
if "Assistant: " in response:
clean_response = response.split("Assistant: ")[1]
elif "assistant: " in response.lower():
clean_response = response.lower().split("assistant: ")[1]
else:
# If no assistant tag found, try to extract meaningful content
parts = response.split("User:")
if len(parts) > 1:
clean_response = parts[-1].strip()
else:
clean_response = response
return clean_response.strip()
def process_segment(self, video_path: str, highlight_types: str) -> bool:
"""Process a video segment and determine if it contains highlights."""
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are a STRICT video highlight analyzer. You must be very selective and only identify truly exceptional moments. Most segments should be rejected. Only select segments with high dramatic value, clear action, strong visual interest, or significant events. Be critical and selective."}]
},
{
"role": "user",
"content": [
{"type": "video", "path": video_path},
{"type": "text", "text": f"""Looking for these highlights:\n{highlight_types}\n\nDoes this video segment match ANY of these highlights?\n\nAnswer with ONE WORD ONLY:\nYES or NO\n\nNothing else. Just YES or NO."""}]
}
]
try:
inputs = self.processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device)
outputs = self.model.generate(
**inputs,
max_new_tokens=8, # Force very short responses
do_sample=False, # Use greedy decoding for consistency
temperature=0.1 # Very low temperature for strict adherence
)
response = self.processor.decode(outputs[0], skip_special_tokens=True)
# Extract assistant response
if "Assistant:" in response:
response = response.split("Assistant:")[-1].strip()
elif "assistant:" in response:
response = response.split("assistant:")[-1].strip()
response = response.lower()
print(f" π€ AI Response: {response}")
# Simple yes/no detection - AI returns simple answers
response_clean = response.strip().replace("'", "").replace("-", "").replace(".", "").strip()
if response_clean.startswith("no"):
return False
elif response_clean.startswith("yes"):
return True
else:
# Default to no if unclear
return False
except Exception as e:
print(f" β Error processing segment: {str(e)}")
return False
def _concatenate_scenes(
self,
video_path: str,
scene_times: list,
output_path: str,
with_effects: bool = True
):
"""Concatenate selected scenes into final video with optional effects."""
if not scene_times:
logger.warning("No scenes to concatenate, skipping.")
return
if with_effects:
self._concatenate_with_effects(video_path, scene_times, output_path)
else:
self._concatenate_basic(video_path, scene_times, output_path)
def _concatenate_basic(self, video_path: str, scene_times: list, output_path: str):
"""Basic concatenation without effects."""
filter_complex_parts = []
concat_inputs = []
for i, (start_sec, end_sec) in enumerate(scene_times):
filter_complex_parts.append(
f"[0:v]trim=start={start_sec}:end={end_sec},"
f"setpts=PTS-STARTPTS[v{i}];"
)
filter_complex_parts.append(
f"[0:a]atrim=start={start_sec}:end={end_sec},"
f"asetpts=PTS-STARTPTS[a{i}];"
)
concat_inputs.append(f"[v{i}][a{i}]")
concat_filter = f"{''.join(concat_inputs)}concat=n={len(scene_times)}:v=1:a=1[outv][outa]"
filter_complex = "".join(filter_complex_parts) + concat_filter
cmd = [
"ffmpeg",
"-y",
"-i", video_path,
"-filter_complex", filter_complex,
"-map", "[outv]",
"-map", "[outa]",
"-c:v", "libx264",
"-c:a", "aac",
output_path
]
logger.info(f"Running ffmpeg command: {' '.join(cmd)}")
subprocess.run(cmd, check=True, capture_output=True, text=True)
def _concatenate_with_effects(self, video_path: str, scene_times: list, output_path: str):
"""Concatenate with fade effects between segments."""
if len(scene_times) == 1:
# Single segment - just extract with fade in/out
start_sec, end_sec = scene_times[0]
duration = end_sec - start_sec
fade_duration = min(0.5, duration / 4) # 0.5s or 25% of duration, whichever is shorter
cmd = [
"ffmpeg", "-y",
"-i", video_path,
"-ss", str(start_sec),
"-t", str(duration),
"-vf", f"fade=in:0:{int(fade_duration*30)},fade=out:{int((duration-fade_duration)*30)}:{int(fade_duration*30)}",
"-af", f"afade=in:st=0:d={fade_duration},afade=out:st={duration-fade_duration}:d={fade_duration}",
"-c:v", "libx264", "-c:a", "aac",
output_path
]
else:
# Multiple segments - create with crossfade transitions
filter_parts = []
audio_parts = []
for i, (start_sec, end_sec) in enumerate(scene_times):
duration = end_sec - start_sec
fade_duration = min(0.3, duration / 6) # Shorter fades for multiple segments
# Video with fade
filter_parts.append(
f"[0:v]trim=start={start_sec}:end={end_sec},setpts=PTS-STARTPTS,"
f"fade=in:0:{int(fade_duration*30)},fade=out:{int((duration-fade_duration)*30)}:{int(fade_duration*30)}[v{i}]"
)
# Audio with fade
audio_parts.append(
f"[0:a]atrim=start={start_sec}:end={end_sec},asetpts=PTS-STARTPTS,"
f"afade=in:st=0:d={fade_duration},afade=out:st={duration-fade_duration}:d={fade_duration}[a{i}]"
)
# Concatenate all segments
video_concat = "".join([f"[v{i}]" for i in range(len(scene_times))])
audio_concat = "".join([f"[a{i}]" for i in range(len(scene_times))])
filter_complex = (
";".join(filter_parts) + ";" +
";".join(audio_parts) + ";" +
f"{video_concat}concat=n={len(scene_times)}:v=1:a=0[outv];" +
f"{audio_concat}concat=n={len(scene_times)}:v=0:a=1[outa]"
)
cmd = [
"ffmpeg", "-y",
"-i", video_path,
"-filter_complex", filter_complex,
"-map", "[outv]", "-map", "[outa]",
"-c:v", "libx264", "-c:a", "aac",
output_path
]
logger.info(f"Running ffmpeg command with effects: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True)
if result.returncode != 0:
logger.error(f"FFmpeg error: {result.stderr}")
# Fall back to basic concatenation
logger.info("Falling back to basic concatenation...")
self._concatenate_basic(video_path, scene_times, output_path)
def process_video(self, video_path: str, output_path: str, segment_length: float = 10.0, with_effects: bool = True) -> Dict:
"""Process video using exact HuggingFace approach."""
print("π Starting HuggingFace Exact Video Highlight Detection")
print(f"π Input: {video_path}")
print(f"π Output: {output_path}")
print(f"β±οΈ Segment Length: {segment_length}s")
print(f"π¨ With Effects: {with_effects}")
print()
# Get video duration
duration = get_video_duration_seconds(video_path)
if duration <= 0:
return {"error": "Could not determine video duration"}
print(f"πΉ Video duration: {duration:.1f}s ({duration/60:.1f} minutes)")
# Check if video is too short for meaningful highlights
if duration < segment_length * 2:
return {
"error": f"Video too short ({duration:.1f}s). Need at least {segment_length * 2:.1f}s for meaningful highlights.",
"video_description": "Video too short for analysis",
"total_segments": 0,
"selected_segments": 0
}
# Step 1: Analyze overall video content
print("π¬ Step 1: Analyzing overall video content...")
video_desc = self.analyze_video_content(video_path)
print(f"π Video Description: {video_desc}")
print()
# Step 2: Get two different sets of highlights
print("π― Step 2: Determining highlight types (2 variations)...")
highlights1 = self.determine_highlights(video_desc, prompt_num=1)
highlights2 = self.determine_highlights(video_desc, prompt_num=2)
print(f"π― Highlight Set 1: {highlights1}")
print()
print(f"π― Highlight Set 2: {highlights2}")
print()
# Step 3: Split video into segments
temp_dir = os.path.join("/tmp", "temp_segments")
os.makedirs(temp_dir, mode=0o755, exist_ok=True)
kept_segments1 = []
kept_segments2 = []
segments_processed = 0
total_segments = int(duration / segment_length)
print(f"π Step 3: Processing {total_segments} segments of {segment_length}s each...")
for start_time in range(0, int(duration), int(segment_length)):
progress = int((segments_processed / total_segments) * 100) if total_segments > 0 else 0
end_time = min(start_time + segment_length, duration)
print(f"π Processing segment {segments_processed+1}/{total_segments} ({progress}%)")
print(f" β° Time: {start_time}s - {end_time:.1f}s")
# Create segment
segment_path = f"{temp_dir}/segment_{start_time}.mp4"
cmd = [
"ffmpeg",
"-y",
"-v", "quiet", # Suppress FFmpeg output
"-i", video_path,
"-ss", str(start_time),
"-t", str(segment_length),
"-c:v", "libx264",
"-preset", "ultrafast", # Use ultrafast preset for speed
"-pix_fmt", "yuv420p", # Ensure compatible pixel format
segment_path
]
subprocess.run(cmd, check=True, capture_output=True)
# Process segment with both highlight sets
if self.process_segment(segment_path, highlights1):
print(" β
KEEPING SEGMENT FOR SET 1")
kept_segments1.append((start_time, end_time))
else:
print(" β REJECTING SEGMENT FOR SET 1")
if self.process_segment(segment_path, highlights2):
print(" β
KEEPING SEGMENT FOR SET 2")
kept_segments2.append((start_time, end_time))
else:
print(" β REJECTING SEGMENT FOR SET 2")
# Clean up segment file
os.remove(segment_path)
segments_processed += 1
print()
# Remove temp directory
os.rmdir(temp_dir)
# Calculate percentages of video kept for each highlight set
total_duration = duration
duration1 = sum(end - start for start, end in kept_segments1)
duration2 = sum(end - start for start, end in kept_segments2)
percent1 = (duration1 / total_duration) * 100
percent2 = (duration2 / total_duration) * 100
print(f"π Results Summary:")
print(f" π― Highlight set 1: {percent1:.1f}% of video ({len(kept_segments1)} segments)")
print(f" π― Highlight set 2: {percent2:.1f}% of video ({len(kept_segments2)} segments)")
# Choose the set with lower percentage unless it's zero
final_segments = kept_segments2 if (0 < percent2 <= percent1 or percent1 == 0) else kept_segments1
selected_set = "2" if final_segments == kept_segments2 else "1"
percent_used = percent2 if final_segments == kept_segments2 else percent1
print(f"π Selected Set {selected_set} with {len(final_segments)} segments ({percent_used:.1f}% of video)")
if not final_segments:
return {
"error": "No highlights detected in the video with either set of criteria",
"video_description": video_desc,
"highlights1": highlights1,
"highlights2": highlights2,
"total_segments": total_segments
}
# Step 4: Create final video
print(f"π¬ Step 4: Creating final highlights video...")
self._concatenate_scenes(video_path, final_segments, output_path, with_effects)
print("β
Highlights video created successfully!")
print(f"π SUCCESS! Created highlights with {len(final_segments)} segments")
print(f" πΉ Total highlight duration: {sum(end - start for start, end in final_segments):.1f}s")
print(f" π Percentage of original video: {percent_used:.1f}%")
# Return analysis results
return {
"success": True,
"video_description": video_desc,
"highlights1": highlights1,
"highlights2": highlights2,
"selected_set": selected_set,
"total_segments": total_segments,
"selected_segments": len(final_segments),
"selected_times": final_segments,
"total_duration": sum(end - start for start, end in final_segments),
"compression_ratio": percent_used / 100,
"output_path": output_path
}
def main():
parser = argparse.ArgumentParser(description='HuggingFace Exact Video Highlights')
parser.add_argument('video_path', help='Path to input video file')
parser.add_argument('--output', required=True, help='Path to output highlights video')
parser.add_argument('--save-analysis', action='store_true', help='Save analysis results to JSON')
parser.add_argument('--segment-length', type=float, default=10.0, help='Length of each segment in seconds (default: 10.0)')
parser.add_argument('--model', default='HuggingFaceTB/SmolVLM2-256M-Video-Instruct', help='SmolVLM2 model to use')
args = parser.parse_args()
# Validate input file
if not os.path.exists(args.video_path):
print(f"β Error: Video file not found: {args.video_path}")
return
# Create output directory if needed
output_dir = os.path.dirname(args.output)
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
print(f"π HuggingFace Exact SmolVLM2 Video Highlights")
print(f" Model: {args.model}")
print()
try:
# Initialize detector
print(f"π₯ Loading {args.model} for HuggingFace Exact Analysis...")
device = "mps" if torch.backends.mps.is_available() else ("cuda" if torch.cuda.is_available() else "cpu")
detector = VideoHighlightDetector(
model_path=args.model,
device=device,
batch_size=16
)
print("β
SmolVLM2 loaded successfully!")
print()
# Process video
results = detector.process_video(
video_path=args.video_path,
output_path=args.output,
segment_length=args.segment_length
)
# Save analysis if requested
if args.save_analysis:
analysis_file = args.output.replace('.mp4', '_exact_analysis.json')
with open(analysis_file, 'w') as f:
json.dump(results, f, indent=2, default=str)
print(f"π Analysis saved: {analysis_file}")
except Exception as e:
print(f"β Error: {str(e)}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|