github-actions[ci]
Clean sync from main branch - 2025-10-16 23:00:12
afe68b4
from __future__ import annotations
import importlib
from enum import Enum
from pathlib import Path
from typing import Dict, Optional, Type, TypeVar, Union
import torch
import yaml
from ase import Atoms
from ase.calculators.calculator import Calculator, all_changes
from huggingface_hub import PyTorchModelHubMixin
from torch import nn
from typing_extensions import Self
try:
from mlip_arena.data.collate import collate_fn
except ImportError:
# Fallback to a dummy function if the import fails
def collate_fn(batch: list[Atoms], cutoff: float) -> None:
raise ImportError(
"collate_fn import failed. Please install the required dependencies."
)
try:
from prefect.logging import get_run_logger
logger = get_run_logger()
except (ImportError, RuntimeError):
from loguru import logger
T = TypeVar("T", bound="MLIP")
with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f:
REGISTRY = yaml.safe_load(f)
MLIPMap = {}
for model, metadata in REGISTRY.items():
try:
module = importlib.import_module(
f"{__package__}.{metadata['module']}.{metadata['family']}"
)
MLIPMap[model] = getattr(module, metadata["class"])
except (
ModuleNotFoundError,
AttributeError,
ValueError,
ImportError,
Exception,
) as e:
logger.warning(e)
continue
MLIPEnum = Enum("MLIPEnum", MLIPMap)
logger.info(f"Successfully loaded models: {list(MLIPEnum.__members__.keys())}")
class MLIP(
nn.Module,
PyTorchModelHubMixin,
tags=["atomistic-simulation", "MLIP"],
):
def __init__(self, model: nn.Module) -> None:
super().__init__()
# https://github.com/pytorch/pytorch/blob/3cbc8c54fd37eb590e2a9206aecf3ab568b3e63c/torch/_dynamo/config.py#L534
# torch._dynamo.config.compiled_autograd = True
# self.model = torch.compile(model)
self.model = model
def _save_pretrained(self, save_directory: Path) -> None:
return super()._save_pretrained(save_directory)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: str | Path,
*,
force_download: bool = False,
resume_download: bool | None = None,
proxies: dict | None = None,
token: str | bool | None = None,
cache_dir: str | Path | None = None,
local_files_only: bool = False,
revision: str | None = None,
**model_kwargs,
) -> Self:
return super().from_pretrained(
pretrained_model_name_or_path,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
cache_dir=cache_dir,
local_files_only=local_files_only,
revision=revision,
**model_kwargs,
)
def forward(self, x):
return self.model(x)
class MLIPCalculator(MLIP, Calculator):
name: str
implemented_properties: list[str] = ["energy", "forces", "stress"]
def __init__(
self,
model: nn.Module,
device: torch.device | None = None,
cutoff: float = 6.0,
# ASE Calculator
restart=None,
atoms=None,
directory=".",
calculator_kwargs: dict = {},
):
MLIP.__init__(self, model=model) # Initialize MLIP part
Calculator.__init__(
self, restart=restart, atoms=atoms, directory=directory, **calculator_kwargs
) # Initialize ASE Calculator part
# Additional initialization if needed
# self.name: str = self.__class__.__name__
from mlip_arena.models.utils import get_freer_device
self.device = device or get_freer_device()
self.cutoff = cutoff
self.model.to(self.device)
# self.device = device or torch.device(
# "cuda" if torch.cuda.is_available() else "cpu"
# )
# self.model: MLIP = MLIP.from_pretrained(model_path, map_location=self.device)
# self.implemented_properties = ["energy", "forces", "stress"]
# def __getstate__(self):
# state = self.__dict__.copy()
# state["_modules"]["model"] = state["_modules"]["model"]._orig_mod
# return state
# def __setstate__(self, state):
# self.__dict__.update(state)
# self.model = torch.compile(state["_modules"]["model"])
def calculate(
self,
atoms: Atoms,
properties: list[str],
system_changes: list = all_changes,
):
"""Calculate energies and forces for the given Atoms object"""
super().calculate(atoms, properties, system_changes)
# TODO: move collate_fn to here in MLIPCalculator
data = collate_fn([atoms], cutoff=self.cutoff).to(self.device)
output = self.forward(data)
# TODO: decollate_fn
self.results = {}
if "energy" in properties:
self.results["energy"] = output["energy"].squeeze().item()
if "forces" in properties:
self.results["forces"] = output["forces"].squeeze().cpu().detach().numpy()
if "stress" in properties:
self.results["stress"] = output["stress"].squeeze().cpu().detach().numpy()
# def forward(self, x: Atoms) -> dict[str, torch.Tensor]:
# """Implement data conversion, graph creation, and model forward pass
# Example implementation:
# 1. Use `ase.neighborlist.NeighborList` to get neighbor list
# 2. Create `torch_geometric.data.Data` object and copy the data
# 3. Pass the `Data` object to the model and return the output
# """
# raise NotImplementedError