Spaces:
Running
Running
Fix token limit issues and improve text chunking
Browse files- aimakerspace/text_utils.py +30 -4
- app.py +12 -3
aimakerspace/text_utils.py
CHANGED
|
@@ -40,8 +40,8 @@ class TextFileLoader:
|
|
| 40 |
class CharacterTextSplitter:
|
| 41 |
def __init__(
|
| 42 |
self,
|
| 43 |
-
chunk_size: int =
|
| 44 |
-
chunk_overlap: int =
|
| 45 |
):
|
| 46 |
assert (
|
| 47 |
chunk_size > chunk_overlap
|
|
@@ -59,7 +59,17 @@ class CharacterTextSplitter:
|
|
| 59 |
if len(current_chunk) + len(paragraph) > self.chunk_size:
|
| 60 |
if current_chunk:
|
| 61 |
chunks.append(current_chunk.strip())
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
else:
|
| 64 |
if current_chunk:
|
| 65 |
current_chunk += "\n\n" + paragraph
|
|
@@ -69,7 +79,23 @@ class CharacterTextSplitter:
|
|
| 69 |
if current_chunk:
|
| 70 |
chunks.append(current_chunk.strip())
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
def split_texts(self, texts: List[str]) -> List[str]:
|
| 75 |
chunks = []
|
|
|
|
| 40 |
class CharacterTextSplitter:
|
| 41 |
def __init__(
|
| 42 |
self,
|
| 43 |
+
chunk_size: int = 1000,
|
| 44 |
+
chunk_overlap: int = 200,
|
| 45 |
):
|
| 46 |
assert (
|
| 47 |
chunk_size > chunk_overlap
|
|
|
|
| 59 |
if len(current_chunk) + len(paragraph) > self.chunk_size:
|
| 60 |
if current_chunk:
|
| 61 |
chunks.append(current_chunk.strip())
|
| 62 |
+
if len(paragraph) > self.chunk_size:
|
| 63 |
+
words = paragraph.split()
|
| 64 |
+
current_chunk = ""
|
| 65 |
+
for word in words:
|
| 66 |
+
if len(current_chunk) + len(word) + 1 > self.chunk_size:
|
| 67 |
+
chunks.append(current_chunk.strip())
|
| 68 |
+
current_chunk = word
|
| 69 |
+
else:
|
| 70 |
+
current_chunk += " " + word if current_chunk else word
|
| 71 |
+
else:
|
| 72 |
+
current_chunk = paragraph
|
| 73 |
else:
|
| 74 |
if current_chunk:
|
| 75 |
current_chunk += "\n\n" + paragraph
|
|
|
|
| 79 |
if current_chunk:
|
| 80 |
chunks.append(current_chunk.strip())
|
| 81 |
|
| 82 |
+
final_chunks = []
|
| 83 |
+
for chunk in chunks:
|
| 84 |
+
if len(chunk) > 8000:
|
| 85 |
+
words = chunk.split()
|
| 86 |
+
current = ""
|
| 87 |
+
for word in words:
|
| 88 |
+
if len(current) + len(word) + 1 > 8000:
|
| 89 |
+
final_chunks.append(current.strip())
|
| 90 |
+
current = word
|
| 91 |
+
else:
|
| 92 |
+
current += " " + word if current else word
|
| 93 |
+
if current:
|
| 94 |
+
final_chunks.append(current.strip())
|
| 95 |
+
else:
|
| 96 |
+
final_chunks.append(chunk)
|
| 97 |
+
|
| 98 |
+
return final_chunks
|
| 99 |
|
| 100 |
def split_texts(self, texts: List[str]) -> List[str]:
|
| 101 |
chunks = []
|
app.py
CHANGED
|
@@ -31,14 +31,23 @@ class RetrievalAugmentedQAPipeline:
|
|
| 31 |
self.vector_db_retriever = vector_db_retriever
|
| 32 |
|
| 33 |
async def arun_pipeline(self, user_query: str):
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
context_prompt = ""
|
|
|
|
|
|
|
|
|
|
| 37 |
for context in context_list:
|
|
|
|
|
|
|
| 38 |
context_prompt += context[0] + "\n"
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
formatted_system_prompt = system_role_prompt.create_message()
|
| 41 |
-
|
| 42 |
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
|
| 43 |
|
| 44 |
async def generate_response():
|
|
|
|
| 31 |
self.vector_db_retriever = vector_db_retriever
|
| 32 |
|
| 33 |
async def arun_pipeline(self, user_query: str):
|
| 34 |
+
# Get more contexts but limit the total length
|
| 35 |
+
context_list = self.vector_db_retriever.search_by_text(user_query, k=6)
|
| 36 |
+
|
| 37 |
+
# Limit total context length to approximately 6000 tokens (24000 characters)
|
| 38 |
context_prompt = ""
|
| 39 |
+
total_length = 0
|
| 40 |
+
max_length = 24000 # Rough estimate: 1 token ≈ 4 characters
|
| 41 |
+
|
| 42 |
for context in context_list:
|
| 43 |
+
if total_length + len(context[0]) > max_length:
|
| 44 |
+
break
|
| 45 |
context_prompt += context[0] + "\n"
|
| 46 |
+
total_length += len(context[0])
|
| 47 |
+
|
| 48 |
+
print(f"Using {len(context_prompt.split())} words of context")
|
| 49 |
|
| 50 |
formatted_system_prompt = system_role_prompt.create_message()
|
|
|
|
| 51 |
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
|
| 52 |
|
| 53 |
async def generate_response():
|