Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,52 +23,54 @@ ENTITIES_COLORS = {
|
|
| 23 |
}
|
| 24 |
BOX_PADDING = 2
|
| 25 |
|
| 26 |
-
# Load pre-trained YOLOv8
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
response = requests.get(model_url_1)
|
| 34 |
-
with open(model_path_1, "wb") as f:
|
| 35 |
-
f.write(response.content)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Load models
|
| 42 |
-
|
| 43 |
-
model_2 = YOLO(model_path_2)
|
| 44 |
|
| 45 |
-
# Get class names from the
|
| 46 |
-
|
| 47 |
-
class_names_2 = list(ENTITIES_COLORS.keys())
|
| 48 |
|
| 49 |
@spaces.GPU(duration=60)
|
| 50 |
def process_image(image, model_choice):
|
| 51 |
try:
|
| 52 |
-
if
|
| 53 |
-
# Use the
|
| 54 |
-
|
|
|
|
| 55 |
result = results[0]
|
| 56 |
|
| 57 |
# Extract annotated image and labels with class names
|
| 58 |
annotated_image = result.plot()
|
| 59 |
|
| 60 |
detected_areas_labels = "\n".join([
|
| 61 |
-
f"{
|
| 62 |
])
|
| 63 |
|
| 64 |
return annotated_image, detected_areas_labels
|
| 65 |
|
| 66 |
elif model_choice == "DLA Model":
|
| 67 |
-
# Use the
|
| 68 |
image_path = "input_image.jpg" # Temporary save the uploaded image
|
| 69 |
cv2.imwrite(image_path, cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
| 70 |
image = cv2.imread(image_path)
|
| 71 |
-
results =
|
| 72 |
boxes = results[0].boxes
|
| 73 |
|
| 74 |
if len(boxes) == 0:
|
|
@@ -76,7 +78,7 @@ def process_image(image, model_choice):
|
|
| 76 |
|
| 77 |
for box in boxes:
|
| 78 |
detection_class_conf = round(box.conf.item(), 2)
|
| 79 |
-
cls =
|
| 80 |
start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1]))
|
| 81 |
end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3]))
|
| 82 |
|
|
@@ -98,7 +100,7 @@ def process_image(image, model_choice):
|
|
| 98 |
start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING)
|
| 99 |
image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness)
|
| 100 |
|
| 101 |
-
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), "Labels: " + ", ".join(
|
| 102 |
|
| 103 |
else:
|
| 104 |
return None, "Invalid model choice"
|
|
@@ -114,7 +116,7 @@ with gr.Blocks() as demo:
|
|
| 114 |
input_image = gr.Image(type="pil", label="Upload Image")
|
| 115 |
output_image = gr.Image(type="pil", label="Annotated Image")
|
| 116 |
|
| 117 |
-
model_choice = gr.Dropdown(
|
| 118 |
output_text = gr.Textbox(label="Detected Areas and Labels")
|
| 119 |
|
| 120 |
btn = gr.Button("Run Document Segmentation")
|
|
|
|
| 23 |
}
|
| 24 |
BOX_PADDING = 2
|
| 25 |
|
| 26 |
+
# Load pre-trained YOLOv8 models
|
| 27 |
+
model_paths = {
|
| 28 |
+
"YOLOv8x Model": "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt",
|
| 29 |
+
"YOLOv8m Model": "yolov8m-doclaynet.pt",
|
| 30 |
+
"YOLOv8n Model": "yolov8n-doclaynet.pt",
|
| 31 |
+
"DLA Model": "models/dla-model.pt"
|
| 32 |
+
}
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
# Ensure the model files are in the correct location
|
| 35 |
+
for model_name, model_path in model_paths.items():
|
| 36 |
+
if not os.path.exists(model_path):
|
| 37 |
+
# For demonstration, we only download the YOLOv8x model
|
| 38 |
+
if model_name == "YOLOv8x Model":
|
| 39 |
+
model_url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
| 40 |
+
response = requests.get(model_url)
|
| 41 |
+
with open(model_path, "wb") as f:
|
| 42 |
+
f.write(response.content)
|
| 43 |
|
| 44 |
# Load models
|
| 45 |
+
models = {name: YOLO(path) for name, path in model_paths.items()}
|
|
|
|
| 46 |
|
| 47 |
+
# Get class names from the YOLOv8 models
|
| 48 |
+
class_names = list(ENTITIES_COLORS.keys())
|
|
|
|
| 49 |
|
| 50 |
@spaces.GPU(duration=60)
|
| 51 |
def process_image(image, model_choice):
|
| 52 |
try:
|
| 53 |
+
if "YOLOv8" in model_choice:
|
| 54 |
+
# Use the selected YOLOv8 model
|
| 55 |
+
model = models[model_choice]
|
| 56 |
+
results = model(source=image, save=False, show_labels=True, show_conf=True, show_boxes=True)
|
| 57 |
result = results[0]
|
| 58 |
|
| 59 |
# Extract annotated image and labels with class names
|
| 60 |
annotated_image = result.plot()
|
| 61 |
|
| 62 |
detected_areas_labels = "\n".join([
|
| 63 |
+
f"{class_names[int(box.cls.item())].upper()}: {float(box.conf):.2f}" for box in result.boxes
|
| 64 |
])
|
| 65 |
|
| 66 |
return annotated_image, detected_areas_labels
|
| 67 |
|
| 68 |
elif model_choice == "DLA Model":
|
| 69 |
+
# Use the DLA model
|
| 70 |
image_path = "input_image.jpg" # Temporary save the uploaded image
|
| 71 |
cv2.imwrite(image_path, cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
| 72 |
image = cv2.imread(image_path)
|
| 73 |
+
results = models[model_choice].predict(source=image, conf=0.2, iou=0.8)
|
| 74 |
boxes = results[0].boxes
|
| 75 |
|
| 76 |
if len(boxes) == 0:
|
|
|
|
| 78 |
|
| 79 |
for box in boxes:
|
| 80 |
detection_class_conf = round(box.conf.item(), 2)
|
| 81 |
+
cls = class_names[int(box.cls)]
|
| 82 |
start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1]))
|
| 83 |
end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3]))
|
| 84 |
|
|
|
|
| 100 |
start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING)
|
| 101 |
image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness)
|
| 102 |
|
| 103 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), "Labels: " + ", ".join(class_names)
|
| 104 |
|
| 105 |
else:
|
| 106 |
return None, "Invalid model choice"
|
|
|
|
| 116 |
input_image = gr.Image(type="pil", label="Upload Image")
|
| 117 |
output_image = gr.Image(type="pil", label="Annotated Image")
|
| 118 |
|
| 119 |
+
model_choice = gr.Dropdown(list(model_paths.keys()), label="Select Model", value="YOLOv8x Model", scale=0.5)
|
| 120 |
output_text = gr.Textbox(label="Detected Areas and Labels")
|
| 121 |
|
| 122 |
btn = gr.Button("Run Document Segmentation")
|