Spaces:
Runtime error
Runtime error
fix file not found error
Browse files
app.py
CHANGED
|
@@ -1,55 +1,274 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
@spaces.GPU
|
| 8 |
def perform_ocr(image):
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
submit_btn.click(fn=perform_ocr, inputs=image_input, outputs=output)
|
| 53 |
-
image_input.change(fn=perform_ocr, inputs=image_input, outputs=output)
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
from PIL import Image
|
| 4 |
+
import logging
|
| 5 |
+
from typing import Optional, Union
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
+
# Configure logging
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
+
class AtlasOCR:
|
| 13 |
+
def __init__(self, model_name: str = "atlasia/AtlasOCR-v0", max_tokens: int = 2000):
|
| 14 |
+
"""Initialize the AtlasOCR model with proper error handling."""
|
| 15 |
+
try:
|
| 16 |
+
from unsloth import FastVisionModel
|
| 17 |
+
|
| 18 |
+
logger.info(f"Loading model: {model_name}")
|
| 19 |
+
self.model, self.processor = FastVisionModel.from_pretrained(
|
| 20 |
+
model_name,
|
| 21 |
+
device_map="auto",
|
| 22 |
+
load_in_4bit=True,
|
| 23 |
+
use_gradient_checkpointing="unsloth"
|
| 24 |
+
)
|
| 25 |
+
self.max_tokens = max_tokens
|
| 26 |
+
self.prompt = ""
|
| 27 |
+
logger.info("Model loaded successfully")
|
| 28 |
+
|
| 29 |
+
except ImportError:
|
| 30 |
+
logger.error("unsloth not found. Please install it: pip install unsloth")
|
| 31 |
+
raise
|
| 32 |
+
except Exception as e:
|
| 33 |
+
logger.error(f"Error loading model: {e}")
|
| 34 |
+
raise
|
| 35 |
+
|
| 36 |
+
def prepare_inputs(self, image: Image.Image) -> dict:
|
| 37 |
+
"""Prepare inputs for the model with proper error handling."""
|
| 38 |
+
try:
|
| 39 |
+
messages = [
|
| 40 |
+
{
|
| 41 |
+
"role": "user",
|
| 42 |
+
"content": [
|
| 43 |
+
{
|
| 44 |
+
"type": "image",
|
| 45 |
+
},
|
| 46 |
+
{"type": "text", "text": self.prompt},
|
| 47 |
+
],
|
| 48 |
+
}
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
text = self.processor.apply_chat_template(
|
| 52 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
inputs = self.processor(
|
| 56 |
+
image,
|
| 57 |
+
text,
|
| 58 |
+
add_special_tokens=False,
|
| 59 |
+
return_tensors="pt",
|
| 60 |
+
)
|
| 61 |
+
return inputs
|
| 62 |
+
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.error(f"Error preparing inputs: {e}")
|
| 65 |
+
raise
|
| 66 |
+
|
| 67 |
+
def predict(self, image: Image.Image) -> str:
|
| 68 |
+
"""Predict text from image with comprehensive error handling."""
|
| 69 |
+
try:
|
| 70 |
+
if image is None:
|
| 71 |
+
return "Please upload an image."
|
| 72 |
+
|
| 73 |
+
# Convert numpy array to PIL Image if needed
|
| 74 |
+
if hasattr(image, 'shape'): # numpy array
|
| 75 |
+
image = Image.fromarray(image)
|
| 76 |
+
|
| 77 |
+
inputs = self.prepare_inputs(image)
|
| 78 |
+
|
| 79 |
+
# Move inputs to GPU if available
|
| 80 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 81 |
+
inputs = {k: v.to(device) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
| 82 |
+
|
| 83 |
+
# Ensure attention_mask is float32
|
| 84 |
+
if 'attention_mask' in inputs:
|
| 85 |
+
inputs['attention_mask'] = inputs['attention_mask'].to(torch.float32)
|
| 86 |
+
|
| 87 |
+
logger.info(f"Generating text with max_tokens={self.max_tokens}")
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
generated_ids = self.model.generate(
|
| 90 |
+
**inputs,
|
| 91 |
+
max_new_tokens=self.max_tokens,
|
| 92 |
+
use_cache=True,
|
| 93 |
+
do_sample=False,
|
| 94 |
+
temperature=0.1
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
generated_ids_trimmed = [
|
| 98 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs['input_ids'], generated_ids)
|
| 99 |
+
]
|
| 100 |
+
|
| 101 |
+
output_text = self.processor.batch_decode(
|
| 102 |
+
generated_ids_trimmed,
|
| 103 |
+
skip_special_tokens=True,
|
| 104 |
+
clean_up_tokenization_spaces=False
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
result = output_text[0].strip()
|
| 108 |
+
logger.info(f"Generated text: {result[:100]}...")
|
| 109 |
+
return result
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.error(f"Error during prediction: {e}")
|
| 113 |
+
return f"Error processing image: {str(e)}"
|
| 114 |
+
|
| 115 |
+
def __call__(self, image: Union[Image.Image, str]) -> str:
|
| 116 |
+
"""Callable interface for the model."""
|
| 117 |
+
if isinstance(image, str):
|
| 118 |
+
return "Please upload an image file."
|
| 119 |
+
return self.predict(image)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# Global model instance
|
| 123 |
+
atlas_ocr = None
|
| 124 |
+
|
| 125 |
+
def load_model():
|
| 126 |
+
"""Load the model globally to avoid reloading."""
|
| 127 |
+
global atlas_ocr
|
| 128 |
+
if atlas_ocr is None:
|
| 129 |
+
try:
|
| 130 |
+
atlas_ocr = AtlasOCR()
|
| 131 |
+
except Exception as e:
|
| 132 |
+
logger.error(f"Failed to load model: {e}")
|
| 133 |
+
return False
|
| 134 |
+
return True
|
| 135 |
|
|
|
|
| 136 |
def perform_ocr(image):
|
| 137 |
+
"""Main OCR function with proper error handling."""
|
| 138 |
+
try:
|
| 139 |
+
if not load_model():
|
| 140 |
+
return "Error: Failed to load model. Please check the logs."
|
| 141 |
+
|
| 142 |
+
if image is None:
|
| 143 |
+
return "Please upload an image to extract text."
|
| 144 |
+
|
| 145 |
+
result = atlas_ocr(image)
|
| 146 |
+
return result
|
| 147 |
+
|
| 148 |
+
except Exception as e:
|
| 149 |
+
logger.error(f"Error in perform_ocr: {e}")
|
| 150 |
+
return f"An error occurred: {str(e)}"
|
| 151 |
+
|
| 152 |
+
def create_interface():
|
| 153 |
+
"""Create the Gradio interface with proper configuration."""
|
| 154 |
|
| 155 |
+
# Example images from assets
|
| 156 |
+
example_images = []
|
| 157 |
+
assets_dir = "assets"
|
| 158 |
+
if os.path.exists(assets_dir):
|
| 159 |
+
for file in os.listdir(assets_dir):
|
| 160 |
+
if file.lower().endswith(('.png', '.jpg', '.jpeg')):
|
| 161 |
+
example_images.append([os.path.join(assets_dir, file)])
|
| 162 |
+
|
| 163 |
+
# If no example images found, use empty list
|
| 164 |
+
if not example_images:
|
| 165 |
+
example_images = []
|
| 166 |
+
|
| 167 |
+
with gr.Blocks(
|
| 168 |
+
title="AtlasOCR - Darija Document OCR",
|
| 169 |
+
theme=gr.themes.Soft(),
|
| 170 |
+
css="""
|
| 171 |
+
.gradio-container {
|
| 172 |
+
max-width: 1200px !important;
|
| 173 |
+
}
|
| 174 |
+
"""
|
| 175 |
+
) as demo:
|
| 176 |
+
|
| 177 |
+
gr.Markdown("""
|
| 178 |
+
# AtlasOCR - Darija Document OCR
|
| 179 |
+
Upload an image to extract Darija text in real-time. This model is specialized for Darija document OCR.
|
| 180 |
+
""")
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
with gr.Column(scale=1):
|
| 184 |
+
# Input image
|
| 185 |
+
image_input = gr.Image(
|
| 186 |
+
type="pil",
|
| 187 |
+
label="Upload Image",
|
| 188 |
+
height=400
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# Example gallery
|
| 192 |
+
if example_images:
|
| 193 |
+
gr.Examples(
|
| 194 |
+
examples=example_images,
|
| 195 |
+
inputs=image_input,
|
| 196 |
+
label="Example Images",
|
| 197 |
+
examples_per_page=4
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# Submit button
|
| 201 |
+
submit_btn = gr.Button(
|
| 202 |
+
"Extract Text",
|
| 203 |
+
variant="primary",
|
| 204 |
+
size="lg"
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Clear button
|
| 208 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
| 209 |
|
| 210 |
+
with gr.Column(scale=1):
|
| 211 |
+
# Output text
|
| 212 |
+
output = gr.Textbox(
|
| 213 |
+
label="Extracted Text",
|
| 214 |
+
lines=20,
|
| 215 |
+
show_copy_button=True,
|
| 216 |
+
placeholder="Extracted text will appear here..."
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Status indicator
|
| 220 |
+
status = gr.Textbox(
|
| 221 |
+
label="Status",
|
| 222 |
+
value="Ready to process images",
|
| 223 |
+
interactive=False
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Model details
|
| 227 |
+
with gr.Accordion("Model Information", open=False):
|
| 228 |
+
gr.Markdown("""
|
| 229 |
+
**Model:** AtlasOCR-v0
|
| 230 |
+
**Description:** Specialized Darija OCR model for Arabic dialect text extraction
|
| 231 |
+
**Size:** 3B parameters
|
| 232 |
+
**Context window:** Supports up to 2000 output tokens
|
| 233 |
+
**Optimization:** 4-bit quantization for efficient inference
|
| 234 |
+
""")
|
| 235 |
+
|
| 236 |
+
# Set up processing flow
|
| 237 |
+
def process_with_status(image):
|
| 238 |
+
if image is None:
|
| 239 |
+
return "Please upload an image.", "No image provided"
|
| 240 |
+
|
| 241 |
+
try:
|
| 242 |
+
result = perform_ocr(image)
|
| 243 |
+
return result, "Processing completed successfully"
|
| 244 |
+
except Exception as e:
|
| 245 |
+
return f"Error: {str(e)}", f"Error occurred: {str(e)}"
|
| 246 |
+
|
| 247 |
+
submit_btn.click(
|
| 248 |
+
fn=process_with_status,
|
| 249 |
+
inputs=image_input,
|
| 250 |
+
outputs=[output, status]
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
image_input.change(
|
| 254 |
+
fn=process_with_status,
|
| 255 |
+
inputs=image_input,
|
| 256 |
+
outputs=[output, status]
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
clear_btn.click(
|
| 260 |
+
fn=lambda: (None, "", "Ready to process images"),
|
| 261 |
+
outputs=[image_input, output, status]
|
| 262 |
+
)
|
| 263 |
|
| 264 |
+
return demo
|
|
|
|
|
|
|
| 265 |
|
| 266 |
+
# Create and launch the interface
|
| 267 |
+
if __name__ == "__main__":
|
| 268 |
+
demo = create_interface()
|
| 269 |
+
demo.launch(
|
| 270 |
+
server_name="0.0.0.0",
|
| 271 |
+
server_port=7860,
|
| 272 |
+
share=False,
|
| 273 |
+
debug=True
|
| 274 |
+
)
|