AtlasOCR-demo / app.py
abdeljalilELmajjodi's picture
adding cache
6c079b8 verified
raw
history blame
9.85 kB
import gradio as gr
import torch
from PIL import Image
import logging
from typing import Optional, Union
import os
import spaces
from dotenv import load_dotenv
load_dotenv()
# Disable torch compilation to avoid dynamo issues
torch._dynamo.config.disable = True
torch.backends.cudnn.allow_tf32 = True
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class AtlasOCR:
def __init__(self, model_name: str = "atlasia/AtlasOCR", max_tokens: int = 2000):
"""Initialize the AtlasOCR model with proper error handling."""
try:
from unsloth import FastVisionModel
logger.info(f"Loading model: {model_name}")
# Disable compilation for the model
with torch._dynamo.config.patch(disable=True):
self.model, self.processor = FastVisionModel.from_pretrained(
model_name,
device_map="auto",
load_in_4bit=True,
use_gradient_checkpointing="unsloth",
token=os.environ["HF_API_KEY"]
)
# Ensure model is not compiled
if hasattr(self.model, '_dynamo_compile'):
self.model._dynamo_compile = False
self.max_tokens = max_tokens
self.prompt = ""
self.device = next(self.model.parameters()).device
logger.info(f"Model loaded successfully on device: {self.device}")
except ImportError:
logger.error("unsloth not found. Please install it: pip install unsloth")
raise
except Exception as e:
logger.error(f"Error loading model: {e}")
raise
def prepare_inputs(self, image: Image.Image) -> dict:
"""Prepare inputs for the model with proper error handling."""
try:
messages = [
{
"role": "user",
"content": [
{
"type": "image",
},
{"type": "text", "text": self.prompt},
],
}
]
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = self.processor(
image,
text,
add_special_tokens=False,
return_tensors="pt",
)
return inputs
except Exception as e:
logger.error(f"Error preparing inputs: {e}")
raise
def predict(self, image: Image.Image) -> str:
"""Predict text from image with comprehensive error handling."""
try:
if image is None:
return "Please upload an image."
# Convert numpy array to PIL Image if needed
if hasattr(image, 'shape'): # numpy array
image = Image.fromarray(image)
inputs = self.prepare_inputs(image)
# Move inputs to the same device as model with explicit device handling
device = self.device
logger.info(f"Moving inputs to device: {device}")
# Manually move each tensor to device
for key in inputs:
if hasattr(inputs[key], 'to'):
inputs[key] = inputs[key].to(device)
# Ensure attention_mask is float32 and on correct device
if 'attention_mask' in inputs:
inputs['attention_mask'] = inputs['attention_mask'].to(dtype=torch.float32, device=device)
logger.info(f"Generating text with max_tokens={self.max_tokens}")
# Disable compilation during generation
with torch.no_grad(), torch._dynamo.config.patch(disable=True):
generated_ids = self.model.generate(
**inputs,
max_new_tokens=self.max_tokens,
use_cache=True,
do_sample=False,
temperature=0.1,
pad_token_id=self.processor.tokenizer.eos_token_id
)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs['input_ids'], generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
result = output_text[0].strip()
logger.info(f"Generated text: {result[:100]}...")
return result
except Exception as e:
logger.error(f"Error during prediction: {e}")
return f"Error processing image: {str(e)}"
def __call__(self, image: Union[Image.Image, str]) -> str:
"""Callable interface for the model."""
if isinstance(image, str):
return "Please upload an image file."
return self.predict(image)
# Global model instance
atlas_ocr = None
def load_model():
"""Load the model globally to avoid reloading."""
global atlas_ocr
if atlas_ocr is None:
try:
atlas_ocr = AtlasOCR()
except Exception as e:
logger.error(f"Failed to load model: {e}")
return False
return True
@spaces.GPU
def perform_ocr(image):
"""Main OCR function with proper error handling."""
try:
if not load_model():
return "Error: Failed to load model. Please check the logs."
if image is None:
return "Please upload an image to extract text."
result = atlas_ocr(image)
return result
except Exception as e:
logger.error(f"Error in perform_ocr: {e}")
return f"An error occurred: {str(e)}"
def process_with_status(image):
"""Process image and return result with status - moved outside to avoid pickling issues."""
if image is None:
return "Please upload an image.", "No image provided"
try:
result = perform_ocr(image)
return result, "Processing completed successfully"
except Exception as e:
return f"Error: {str(e)}", f"Error occurred: {str(e)}"
def create_interface():
"""Create the Gradio interface with proper configuration."""
with gr.Blocks(
title="AtlasOCR - Darija Document OCR",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
"""
) as demo:
gr.Markdown("""
# AtlasOCR - Darija Document OCR
Upload an image to extract Darija text in real-time. This model is specialized for Darija document OCR.
""")
with gr.Row():
with gr.Column(scale=1):
# Input image
image_input = gr.Image(
type="pil",
label="Upload Image",
height=400
)
# Submit button
submit_btn = gr.Button(
"Extract Text",
variant="primary",
size="lg"
)
# Clear button
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=1):
# Output text
output = gr.Textbox(
label="Extracted Text",
lines=20,
show_copy_button=True,
placeholder="Extracted text will appear here..."
)
# Status indicator
status = gr.Textbox(
label="Status",
value="Ready to process images",
interactive=False
)
# Model details
with gr.Accordion("Model Information", open=False):
gr.Markdown("""
**Model:** AtlasOCR-v0
**Description:** Specialized Darija OCR model for Arabic dialect text extraction
**Size:** 3B parameters
**Context window:** Supports up to 2000 output tokens
**Optimization:** 4-bit quantization for efficient inference
""")
gr.Examples(
examples=[
["i3.png"],
["i6.png"]
],
inputs=image_input,
outputs=[output, status], # <-- required
fn=process_with_status, # <-- required
label="Example Images",
examples_per_page=4,
cache_examples=True
)
# Set up processing flow
submit_btn.click(
fn=process_with_status,
inputs=image_input,
outputs=[output, status]
)
image_input.change(
fn=process_with_status,
inputs=image_input,
outputs=[output, status]
)
clear_btn.click(
fn=lambda: (None, "", "Ready to process images"),
outputs=[image_input, output, status]
)
return demo
# Create and launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True
)