Spaces:
Sleeping
Sleeping
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional, Tuple, Union | |
| import diffusers | |
| import pkg_resources | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.nn.init as init | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.attention import Attention, FeedForward | |
| from diffusers.models.attention_processor import (Attention, | |
| AttentionProcessor, | |
| AttnProcessor2_0, | |
| HunyuanAttnProcessor2_0) | |
| from diffusers.models.embeddings import (SinusoidalPositionalEmbedding, | |
| TimestepEmbedding, Timesteps, | |
| get_3d_sincos_pos_embed) | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import (AdaLayerNorm, AdaLayerNormZero, | |
| CogVideoXLayerNormZero) | |
| from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| from einops import rearrange, repeat | |
| from torch import nn | |
| from .motion_module import PositionalEncoding, get_motion_module | |
| from .norm import AdaLayerNormShift, EasyAnimateLayerNormZero, FP32LayerNorm | |
| from .processor import (EasyAnimateAttnProcessor2_0, | |
| EasyAnimateSWAttnProcessor2_0, | |
| LazyKVCompressionProcessor2_0) | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| def zero_module(module): | |
| # Zero out the parameters of a module and return it. | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| class GatedSelfAttentionDense(nn.Module): | |
| r""" | |
| A gated self-attention dense layer that combines visual features and object features. | |
| Parameters: | |
| query_dim (`int`): The number of channels in the query. | |
| context_dim (`int`): The number of channels in the context. | |
| n_heads (`int`): The number of heads to use for attention. | |
| d_head (`int`): The number of channels in each head. | |
| """ | |
| def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
| super().__init__() | |
| # we need a linear projection since we need cat visual feature and obj feature | |
| self.linear = nn.Linear(context_dim, query_dim) | |
| self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
| self.ff = FeedForward(query_dim, activation_fn="geglu") | |
| self.norm1 = FP32LayerNorm(query_dim) | |
| self.norm2 = FP32LayerNorm(query_dim) | |
| self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
| self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
| self.enabled = True | |
| def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
| if not self.enabled: | |
| return x | |
| n_visual = x.shape[1] | |
| objs = self.linear(objs) | |
| x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
| x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
| return x | |
| class LazyKVCompressionAttention(Attention): | |
| def __init__( | |
| self, | |
| sr_ratio=2, *args, **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| self.sr_ratio = sr_ratio | |
| self.k_compression = nn.Conv2d( | |
| kwargs["query_dim"], | |
| kwargs["query_dim"], | |
| groups=kwargs["query_dim"], | |
| kernel_size=sr_ratio, | |
| stride=sr_ratio, | |
| bias=True | |
| ) | |
| self.v_compression = nn.Conv2d( | |
| kwargs["query_dim"], | |
| kwargs["query_dim"], | |
| groups=kwargs["query_dim"], | |
| kernel_size=sr_ratio, | |
| stride=sr_ratio, | |
| bias=True | |
| ) | |
| init.constant_(self.k_compression.weight, 1 / (sr_ratio * sr_ratio)) | |
| init.constant_(self.v_compression.weight, 1 / (sr_ratio * sr_ratio)) | |
| init.constant_(self.k_compression.bias, 0) | |
| init.constant_(self.v_compression.bias, 0) | |
| class TemporalTransformerBlock(nn.Module): | |
| r""" | |
| A Temporal Transformer block. | |
| Parameters: | |
| dim (`int`): The number of channels in the input and output. | |
| num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| num_embeds_ada_norm (: | |
| obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
| attention_bias (: | |
| obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
| only_cross_attention (`bool`, *optional*): | |
| Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
| double_self_attention (`bool`, *optional*): | |
| Whether to use two self-attention layers. In this case no cross attention layers are used. | |
| upcast_attention (`bool`, *optional*): | |
| Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
| norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
| Whether to use learnable elementwise affine parameters for normalization. | |
| norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
| The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
| final_dropout (`bool` *optional*, defaults to False): | |
| Whether to apply a final dropout after the last feed-forward layer. | |
| attention_type (`str`, *optional*, defaults to `"default"`): | |
| The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
| positional_embeddings (`str`, *optional*, defaults to `None`): | |
| The type of positional embeddings to apply to. | |
| num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
| The maximum number of positional embeddings to apply. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_elementwise_affine: bool = True, | |
| norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
| norm_eps: float = 1e-5, | |
| final_dropout: bool = False, | |
| attention_type: str = "default", | |
| positional_embeddings: Optional[str] = None, | |
| num_positional_embeddings: Optional[int] = None, | |
| # motion module kwargs | |
| motion_module_type = "VanillaGrid", | |
| motion_module_kwargs = None, | |
| qk_norm = False, | |
| after_norm = False, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
| self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
| self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
| self.use_layer_norm = norm_type == "layer_norm" | |
| if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
| raise ValueError( | |
| f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
| f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
| ) | |
| if positional_embeddings and (num_positional_embeddings is None): | |
| raise ValueError( | |
| "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
| ) | |
| if positional_embeddings == "sinusoidal": | |
| self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
| else: | |
| self.pos_embed = None | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # 1. Self-Attn | |
| if self.use_ada_layer_norm: | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
| elif self.use_ada_layer_norm_zero: | |
| self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
| else: | |
| self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
| upcast_attention=upcast_attention, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
| ) | |
| self.attn_temporal = get_motion_module( | |
| in_channels = dim, | |
| motion_module_type = motion_module_type, | |
| motion_module_kwargs = motion_module_kwargs, | |
| ) | |
| # 2. Cross-Attn | |
| if cross_attention_dim is not None or double_self_attention: | |
| # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
| # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
| # the second cross attention block. | |
| self.norm2 = ( | |
| AdaLayerNorm(dim, num_embeds_ada_norm) | |
| if self.use_ada_layer_norm | |
| else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| ) | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
| ) # is self-attn if encoder_hidden_states is none | |
| else: | |
| self.norm2 = None | |
| self.attn2 = None | |
| # 3. Feed-forward | |
| if not self.use_ada_layer_norm_single: | |
| self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
| if after_norm: | |
| self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| else: | |
| self.norm4 = None | |
| # 4. Fuser | |
| if attention_type == "gated" or attention_type == "gated-text-image": | |
| self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
| # 5. Scale-shift for PixArt-Alpha. | |
| if self.use_ada_layer_norm_single: | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
| # let chunk size default to None | |
| self._chunk_size = None | |
| self._chunk_dim = 0 | |
| def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
| # Sets chunk feed-forward | |
| self._chunk_size = chunk_size | |
| self._chunk_dim = dim | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| num_frames: int = 16, | |
| height: int = 32, | |
| width: int = 32, | |
| ) -> torch.FloatTensor: | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 0. Self-Attention | |
| batch_size = hidden_states.shape[0] | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero: | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
| hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| elif self.use_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| elif self.use_ada_layer_norm_single: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
| ).chunk(6, dim=1) | |
| norm_hidden_states = self.norm1(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
| norm_hidden_states = norm_hidden_states.squeeze(1) | |
| else: | |
| raise ValueError("Incorrect norm used") | |
| if self.pos_embed is not None: | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| # 1. Retrieve lora scale. | |
| lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
| # 2. Prepare GLIGEN inputs | |
| cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
| gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
| norm_hidden_states = rearrange(norm_hidden_states, "b (f d) c -> (b f) d c", f=num_frames) | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| attn_output = rearrange(attn_output, "(b f) d c -> b (f d) c", f=num_frames) | |
| if self.use_ada_layer_norm_zero: | |
| attn_output = gate_msa.unsqueeze(1) * attn_output | |
| elif self.use_ada_layer_norm_single: | |
| attn_output = gate_msa * attn_output | |
| hidden_states = attn_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| # 2.5 GLIGEN Control | |
| if gligen_kwargs is not None: | |
| hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
| # 2.75. Temp-Attention | |
| if self.attn_temporal is not None: | |
| attn_output = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=num_frames, h=height, w=width) | |
| attn_output = self.attn_temporal(attn_output) | |
| hidden_states = rearrange(attn_output, "b c f h w -> b (f h w) c") | |
| # 3. Cross-Attention | |
| if self.attn2 is not None: | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm2(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
| norm_hidden_states = self.norm2(hidden_states) | |
| elif self.use_ada_layer_norm_single: | |
| # For PixArt norm2 isn't applied here: | |
| # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
| norm_hidden_states = hidden_states | |
| else: | |
| raise ValueError("Incorrect norm") | |
| if self.pos_embed is not None and self.use_ada_layer_norm_single is None: | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| if norm_hidden_states.dtype != encoder_hidden_states.dtype or norm_hidden_states.dtype != encoder_attention_mask.dtype: | |
| norm_hidden_states = norm_hidden_states.to(encoder_hidden_states.dtype) | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 4. Feed-forward | |
| if not self.use_ada_layer_norm_single: | |
| norm_hidden_states = self.norm3(hidden_states) | |
| if self.use_ada_layer_norm_zero: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| if self.use_ada_layer_norm_single: | |
| norm_hidden_states = self.norm2(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
| if self._chunk_size is not None: | |
| # "feed_forward_chunk_size" can be used to save memory | |
| if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
| raise ValueError( | |
| f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
| ) | |
| num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
| ff_output = torch.cat( | |
| [ | |
| self.ff(hid_slice, scale=lora_scale) | |
| for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
| ], | |
| dim=self._chunk_dim, | |
| ) | |
| else: | |
| ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
| if self.norm4 is not None: | |
| ff_output = self.norm4(ff_output) | |
| if self.use_ada_layer_norm_zero: | |
| ff_output = gate_mlp.unsqueeze(1) * ff_output | |
| elif self.use_ada_layer_norm_single: | |
| ff_output = gate_mlp * ff_output | |
| hidden_states = ff_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| return hidden_states | |
| class SelfAttentionTemporalTransformerBlock(nn.Module): | |
| r""" | |
| A Temporal Transformer block. | |
| Parameters: | |
| dim (`int`): The number of channels in the input and output. | |
| num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| num_embeds_ada_norm (: | |
| obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
| attention_bias (: | |
| obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
| only_cross_attention (`bool`, *optional*): | |
| Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
| double_self_attention (`bool`, *optional*): | |
| Whether to use two self-attention layers. In this case no cross attention layers are used. | |
| upcast_attention (`bool`, *optional*): | |
| Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
| norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
| Whether to use learnable elementwise affine parameters for normalization. | |
| norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
| The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
| final_dropout (`bool` *optional*, defaults to False): | |
| Whether to apply a final dropout after the last feed-forward layer. | |
| attention_type (`str`, *optional*, defaults to `"default"`): | |
| The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
| positional_embeddings (`str`, *optional*, defaults to `None`): | |
| The type of positional embeddings to apply to. | |
| num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
| The maximum number of positional embeddings to apply. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_elementwise_affine: bool = True, | |
| norm_type: str = "layer_norm", | |
| norm_eps: float = 1e-5, | |
| final_dropout: bool = False, | |
| attention_type: str = "default", | |
| positional_embeddings: Optional[str] = None, | |
| num_positional_embeddings: Optional[int] = None, | |
| qk_norm = False, | |
| after_norm = False, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
| self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
| self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
| self.use_layer_norm = norm_type == "layer_norm" | |
| if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
| raise ValueError( | |
| f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
| f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
| ) | |
| if positional_embeddings and (num_positional_embeddings is None): | |
| raise ValueError( | |
| "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
| ) | |
| if positional_embeddings == "sinusoidal": | |
| self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
| else: | |
| self.pos_embed = None | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # 1. Self-Attn | |
| if self.use_ada_layer_norm: | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
| elif self.use_ada_layer_norm_zero: | |
| self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
| else: | |
| self.norm1 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
| upcast_attention=upcast_attention, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
| ) | |
| # 2. Cross-Attn | |
| if cross_attention_dim is not None or double_self_attention: | |
| # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
| # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
| # the second cross attention block. | |
| self.norm2 = ( | |
| AdaLayerNorm(dim, num_embeds_ada_norm) | |
| if self.use_ada_layer_norm | |
| else FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| ) | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| processor=HunyuanAttnProcessor2_0() if qk_norm else AttnProcessor2_0(), | |
| ) # is self-attn if encoder_hidden_states is none | |
| else: | |
| self.norm2 = None | |
| self.attn2 = None | |
| # 3. Feed-forward | |
| if not self.use_ada_layer_norm_single: | |
| self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
| if after_norm: | |
| self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| else: | |
| self.norm4 = None | |
| # 4. Fuser | |
| if attention_type == "gated" or attention_type == "gated-text-image": | |
| self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
| # 5. Scale-shift for PixArt-Alpha. | |
| if self.use_ada_layer_norm_single: | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
| # let chunk size default to None | |
| self._chunk_size = None | |
| self._chunk_dim = 0 | |
| def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
| # Sets chunk feed-forward | |
| self._chunk_size = chunk_size | |
| self._chunk_dim = dim | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| ) -> torch.FloatTensor: | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 0. Self-Attention | |
| batch_size = hidden_states.shape[0] | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero: | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
| hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| elif self.use_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| elif self.use_ada_layer_norm_single: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
| ).chunk(6, dim=1) | |
| norm_hidden_states = self.norm1(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
| norm_hidden_states = norm_hidden_states.squeeze(1) | |
| else: | |
| raise ValueError("Incorrect norm used") | |
| if self.pos_embed is not None: | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| # 1. Retrieve lora scale. | |
| lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
| # 2. Prepare GLIGEN inputs | |
| cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
| gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| if self.use_ada_layer_norm_zero: | |
| attn_output = gate_msa.unsqueeze(1) * attn_output | |
| elif self.use_ada_layer_norm_single: | |
| attn_output = gate_msa * attn_output | |
| hidden_states = attn_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| # 2.5 GLIGEN Control | |
| if gligen_kwargs is not None: | |
| hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
| # 3. Cross-Attention | |
| if self.attn2 is not None: | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm2(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
| norm_hidden_states = self.norm2(hidden_states) | |
| elif self.use_ada_layer_norm_single: | |
| # For PixArt norm2 isn't applied here: | |
| # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
| norm_hidden_states = hidden_states | |
| else: | |
| raise ValueError("Incorrect norm") | |
| if self.pos_embed is not None and self.use_ada_layer_norm_single is None: | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 4. Feed-forward | |
| if not self.use_ada_layer_norm_single: | |
| norm_hidden_states = self.norm3(hidden_states) | |
| if self.use_ada_layer_norm_zero: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| if self.use_ada_layer_norm_single: | |
| norm_hidden_states = self.norm2(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
| if self._chunk_size is not None: | |
| # "feed_forward_chunk_size" can be used to save memory | |
| if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
| raise ValueError( | |
| f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
| ) | |
| num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
| ff_output = torch.cat( | |
| [ | |
| self.ff(hid_slice, scale=lora_scale) | |
| for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
| ], | |
| dim=self._chunk_dim, | |
| ) | |
| else: | |
| ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
| if self.norm4 is not None: | |
| ff_output = self.norm4(ff_output) | |
| if self.use_ada_layer_norm_zero: | |
| ff_output = gate_mlp.unsqueeze(1) * ff_output | |
| elif self.use_ada_layer_norm_single: | |
| ff_output = gate_mlp * ff_output | |
| hidden_states = ff_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| return hidden_states | |
| class GEGLU(nn.Module): | |
| def __init__(self, dim_in, dim_out, norm_elementwise_affine): | |
| super().__init__() | |
| self.norm = FP32LayerNorm(dim_in, dim_in, norm_elementwise_affine) | |
| self.proj = nn.Linear(dim_in, dim_out * 2) | |
| def forward(self, x): | |
| x, gate = self.proj(self.norm(x)).chunk(2, dim=-1) | |
| return x * F.gelu(gate) | |
| class HunyuanDiTBlock(nn.Module): | |
| r""" | |
| Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and | |
| QKNorm | |
| Parameters: | |
| dim (`int`): | |
| The number of channels in the input and output. | |
| num_attention_heads (`int`): | |
| The number of headsto use for multi-head attention. | |
| cross_attention_dim (`int`,*optional*): | |
| The size of the encoder_hidden_states vector for cross attention. | |
| dropout(`float`, *optional*, defaults to 0.0): | |
| The dropout probability to use. | |
| activation_fn (`str`,*optional*, defaults to `"geglu"`): | |
| Activation function to be used in feed-forward. . | |
| norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
| Whether to use learnable elementwise affine parameters for normalization. | |
| norm_eps (`float`, *optional*, defaults to 1e-6): | |
| A small constant added to the denominator in normalization layers to prevent division by zero. | |
| final_dropout (`bool` *optional*, defaults to False): | |
| Whether to apply a final dropout after the last feed-forward layer. | |
| ff_inner_dim (`int`, *optional*): | |
| The size of the hidden layer in the feed-forward block. Defaults to `None`. | |
| ff_bias (`bool`, *optional*, defaults to `True`): | |
| Whether to use bias in the feed-forward block. | |
| skip (`bool`, *optional*, defaults to `False`): | |
| Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks. | |
| qk_norm (`bool`, *optional*, defaults to `True`): | |
| Whether to use normalization in QK calculation. Defaults to `True`. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| cross_attention_dim: int = 1024, | |
| dropout=0.0, | |
| activation_fn: str = "geglu", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-6, | |
| final_dropout: bool = False, | |
| ff_inner_dim: Optional[int] = None, | |
| ff_bias: bool = True, | |
| skip: bool = False, | |
| qk_norm: bool = True, | |
| time_position_encoding: bool = False, | |
| after_norm: bool = False, | |
| is_local_attention: bool = False, | |
| local_attention_frames: int = 2, | |
| enable_inpaint: bool = False, | |
| kvcompression = False, | |
| ): | |
| super().__init__() | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # NOTE: when new version comes, check norm2 and norm 3 | |
| # 1. Self-Attn | |
| self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.t_embed = PositionalEncoding(dim, dropout=0., max_len=512) \ | |
| if time_position_encoding else nn.Identity() | |
| self.is_local_attention = is_local_attention | |
| self.local_attention_frames = local_attention_frames | |
| self.kvcompression = kvcompression | |
| if kvcompression: | |
| self.attn1 = LazyKVCompressionAttention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| dim_head=dim // num_attention_heads, | |
| heads=num_attention_heads, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| eps=1e-6, | |
| bias=True, | |
| processor=LazyKVCompressionProcessor2_0(), | |
| ) | |
| else: | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| dim_head=dim // num_attention_heads, | |
| heads=num_attention_heads, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| eps=1e-6, | |
| bias=True, | |
| processor=HunyuanAttnProcessor2_0(), | |
| ) | |
| # 2. Cross-Attn | |
| self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
| if self.is_local_attention: | |
| from mamba_ssm import Mamba2 | |
| self.mamba_norm_in = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
| self.in_linear = nn.Linear(dim, 1536) | |
| self.mamba_norm_1 = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine) | |
| self.mamba_norm_2 = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine) | |
| self.mamba_block_1 = Mamba2( | |
| d_model=1536, | |
| d_state=64, | |
| d_conv=4, | |
| expand=2, | |
| ) | |
| self.mamba_block_2 = Mamba2( | |
| d_model=1536, | |
| d_state=64, | |
| d_conv=4, | |
| expand=2, | |
| ) | |
| self.mamba_norm_after_mamba_block = FP32LayerNorm(1536, norm_eps, norm_elementwise_affine) | |
| self.out_linear = nn.Linear(1536, dim) | |
| self.out_linear = zero_module(self.out_linear) | |
| self.mamba_norm_out = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| dim_head=dim // num_attention_heads, | |
| heads=num_attention_heads, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| eps=1e-6, | |
| bias=True, | |
| processor=HunyuanAttnProcessor2_0(), | |
| ) | |
| if enable_inpaint: | |
| self.norm_clip = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
| self.attn_clip = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| dim_head=dim // num_attention_heads, | |
| heads=num_attention_heads, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| eps=1e-6, | |
| bias=True, | |
| processor=HunyuanAttnProcessor2_0(), | |
| ) | |
| self.gate_clip = GEGLU(dim, dim, norm_elementwise_affine) | |
| self.norm_clip_out = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
| else: | |
| self.attn_clip = None | |
| self.norm_clip = None | |
| self.gate_clip = None | |
| self.norm_clip_out = None | |
| # 3. Feed-forward | |
| self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, ### 0.0 | |
| activation_fn=activation_fn, ### approx GeLU | |
| final_dropout=final_dropout, ### 0.0 | |
| inner_dim=ff_inner_dim, ### int(dim * mlp_ratio) | |
| bias=ff_bias, | |
| ) | |
| # 4. Skip Connection | |
| if skip: | |
| self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True) | |
| self.skip_linear = nn.Linear(2 * dim, dim) | |
| else: | |
| self.skip_linear = None | |
| if after_norm: | |
| self.norm4 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| else: | |
| self.norm4 = None | |
| # let chunk size default to None | |
| self._chunk_size = None | |
| self._chunk_dim = 0 | |
| def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
| # Sets chunk feed-forward | |
| self._chunk_size = chunk_size | |
| self._chunk_dim = dim | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| temb: Optional[torch.Tensor] = None, | |
| image_rotary_emb=None, | |
| skip=None, | |
| num_frames: int = 1, | |
| height: int = 32, | |
| width: int = 32, | |
| clip_encoder_hidden_states: Optional[torch.Tensor] = None, | |
| disable_image_rotary_emb_in_attn1=False, | |
| ) -> torch.Tensor: | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 0. Long Skip Connection | |
| if self.skip_linear is not None: | |
| cat = torch.cat([hidden_states, skip], dim=-1) | |
| cat = self.skip_norm(cat) | |
| hidden_states = self.skip_linear(cat) | |
| if image_rotary_emb is not None: | |
| image_rotary_emb = (torch.cat([image_rotary_emb[0] for i in range(num_frames)], dim=0), torch.cat([image_rotary_emb[1] for i in range(num_frames)], dim=0)) | |
| if num_frames != 1: | |
| # add time embedding | |
| hidden_states = rearrange(hidden_states, "b (f d) c -> (b d) f c", f=num_frames) | |
| if self.t_embed is not None: | |
| hidden_states = self.t_embed(hidden_states) | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> b (f d) c", d=height * width) | |
| # 1. Self-Attention | |
| norm_hidden_states = self.norm1(hidden_states, temb) ### checked: self.norm1 is correct | |
| if num_frames > 2 and self.is_local_attention: | |
| if image_rotary_emb is not None: | |
| attn1_image_rotary_emb = (image_rotary_emb[0][:int(height * width * 2)], image_rotary_emb[1][:int(height * width * 2)]) | |
| else: | |
| attn1_image_rotary_emb = image_rotary_emb | |
| norm_hidden_states_1 = rearrange(norm_hidden_states, "b (f d) c -> b f d c", d=height * width) | |
| norm_hidden_states_1 = rearrange(norm_hidden_states_1, "b (f p) d c -> (b f) (p d) c", p = 2) | |
| attn_output = self.attn1( | |
| norm_hidden_states_1, | |
| image_rotary_emb=attn1_image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None, | |
| ) | |
| attn_output = rearrange(attn_output, "(b f) (p d) c -> b (f p) d c", p = 2, f = num_frames // 2) | |
| norm_hidden_states_2 = rearrange(norm_hidden_states, "b (f d) c -> b f d c", d = height * width)[:, 1:-1] | |
| local_attention_frames_num = norm_hidden_states_2.size()[1] // 2 | |
| norm_hidden_states_2 = rearrange(norm_hidden_states_2, "b (f p) d c -> (b f) (p d) c", p = 2) | |
| attn_output_2 = self.attn1( | |
| norm_hidden_states_2, | |
| image_rotary_emb=attn1_image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None, | |
| ) | |
| attn_output_2 = rearrange(attn_output_2, "(b f) (p d) c -> b (f p) d c", p = 2, f = local_attention_frames_num) | |
| attn_output[:, 1:-1] = (attn_output[:, 1:-1] + attn_output_2) / 2 | |
| attn_output = rearrange(attn_output, "b f d c -> b (f d) c") | |
| else: | |
| if self.kvcompression: | |
| norm_hidden_states = rearrange(norm_hidden_states, "b (f h w) c -> b c f h w", f = num_frames, h = height, w = width) | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| image_rotary_emb=image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None, | |
| ) | |
| else: | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| image_rotary_emb=image_rotary_emb if not disable_image_rotary_emb_in_attn1 else None, | |
| ) | |
| hidden_states = hidden_states + attn_output | |
| if num_frames > 2 and self.is_local_attention: | |
| hidden_states_in = self.in_linear(self.mamba_norm_in(hidden_states)) | |
| hidden_states = hidden_states + self.mamba_norm_out( | |
| self.out_linear( | |
| self.mamba_norm_after_mamba_block( | |
| self.mamba_block_1( | |
| self.mamba_norm_1(hidden_states_in) | |
| ) + | |
| self.mamba_block_2( | |
| self.mamba_norm_2(hidden_states_in.flip(1)) | |
| ).flip(1) | |
| ) | |
| ) | |
| ) | |
| # 2. Cross-Attention | |
| hidden_states = hidden_states + self.attn2( | |
| self.norm2(hidden_states), | |
| encoder_hidden_states=encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| if self.attn_clip is not None: | |
| hidden_states = hidden_states + self.norm_clip_out( | |
| self.gate_clip( | |
| self.attn_clip( | |
| self.norm_clip(hidden_states), | |
| encoder_hidden_states=clip_encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| ) | |
| ) | |
| # FFN Layer ### TODO: switch norm2 and norm3 in the state dict | |
| mlp_inputs = self.norm3(hidden_states) | |
| if self.norm4 is not None: | |
| hidden_states = hidden_states + self.norm4(self.ff(mlp_inputs)) | |
| else: | |
| hidden_states = hidden_states + self.ff(mlp_inputs) | |
| return hidden_states | |
| class EasyAnimateDiTBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| time_embed_dim: int, | |
| dropout: float = 0.0, | |
| activation_fn: str = "gelu-approximate", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-6, | |
| final_dropout: bool = True, | |
| ff_inner_dim: Optional[int] = None, | |
| ff_bias: bool = True, | |
| qk_norm: bool = True, | |
| after_norm: bool = False, | |
| norm_type: str="fp32_layer_norm", | |
| is_mmdit_block: bool = True, | |
| is_swa: bool = False, | |
| ): | |
| super().__init__() | |
| # Attention Part | |
| self.norm1 = EasyAnimateLayerNormZero( | |
| time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True | |
| ) | |
| self.is_swa = is_swa | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| eps=1e-6, | |
| bias=True, | |
| processor=EasyAnimateAttnProcessor2_0() if not is_swa else EasyAnimateSWAttnProcessor2_0(), | |
| ) | |
| if is_mmdit_block: | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| eps=1e-6, | |
| bias=True, | |
| processor=EasyAnimateAttnProcessor2_0() if not is_swa else EasyAnimateSWAttnProcessor2_0(), | |
| ) | |
| else: | |
| self.attn2 = None | |
| # FFN Part | |
| self.norm2 = EasyAnimateLayerNormZero( | |
| time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True | |
| ) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| inner_dim=ff_inner_dim, | |
| bias=ff_bias, | |
| ) | |
| if is_mmdit_block: | |
| self.txt_ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| inner_dim=ff_inner_dim, | |
| bias=ff_bias, | |
| ) | |
| else: | |
| self.txt_ff = None | |
| if after_norm: | |
| self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| else: | |
| self.norm3 = None | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| num_frames = None, | |
| height = None, | |
| width = None | |
| ) -> torch.Tensor: | |
| # Norm | |
| norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( | |
| hidden_states, encoder_hidden_states, temb | |
| ) | |
| # Attn | |
| if self.is_swa: | |
| attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| attn2=self.attn2, | |
| num_frames=num_frames, | |
| height=height, | |
| width=width, | |
| ) | |
| else: | |
| attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| attn2=self.attn2 | |
| ) | |
| hidden_states = hidden_states + gate_msa * attn_hidden_states | |
| encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states | |
| # Norm | |
| norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( | |
| hidden_states, encoder_hidden_states, temb | |
| ) | |
| # FFN | |
| if self.norm3 is not None: | |
| norm_hidden_states = self.norm3(self.ff(norm_hidden_states)) | |
| if self.txt_ff is not None: | |
| norm_encoder_hidden_states = self.norm3(self.txt_ff(norm_encoder_hidden_states)) | |
| else: | |
| norm_encoder_hidden_states = self.norm3(self.ff(norm_encoder_hidden_states)) | |
| else: | |
| norm_hidden_states = self.ff(norm_hidden_states) | |
| if self.txt_ff is not None: | |
| norm_encoder_hidden_states = self.txt_ff(norm_encoder_hidden_states) | |
| else: | |
| norm_encoder_hidden_states = self.ff(norm_encoder_hidden_states) | |
| hidden_states = hidden_states + gate_ff * norm_hidden_states | |
| encoder_hidden_states = encoder_hidden_states + enc_gate_ff * norm_encoder_hidden_states | |
| return hidden_states, encoder_hidden_states |