Spaces:
Sleeping
Sleeping
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import math | |
| import os | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, Optional | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.nn.init as init | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.attention import BasicTransformerBlock | |
| from diffusers.models.embeddings import PatchEmbed, Timesteps, TimestepEmbedding | |
| from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import AdaLayerNormSingle | |
| from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, is_torch_version | |
| from einops import rearrange | |
| from torch import nn | |
| from typing import Dict, Optional, Tuple | |
| from .attention import (SelfAttentionTemporalTransformerBlock, | |
| TemporalTransformerBlock) | |
| from .patch import Patch1D, PatchEmbed3D, PatchEmbedF3D, UnPatch1D, TemporalUpsampler3D, CasualPatchEmbed3D | |
| try: | |
| from diffusers.models.embeddings import PixArtAlphaTextProjection | |
| except: | |
| from diffusers.models.embeddings import \ | |
| CaptionProjection as PixArtAlphaTextProjection | |
| def zero_module(module): | |
| # Zero out the parameters of a module and return it. | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): | |
| """ | |
| For PixArt-Alpha. | |
| Reference: | |
| https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 | |
| """ | |
| def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): | |
| super().__init__() | |
| self.outdim = size_emb_dim | |
| self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
| self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
| self.use_additional_conditions = use_additional_conditions | |
| if use_additional_conditions: | |
| self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
| self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) | |
| self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) | |
| self.resolution_embedder.linear_2 = zero_module(self.resolution_embedder.linear_2) | |
| self.aspect_ratio_embedder.linear_2 = zero_module(self.aspect_ratio_embedder.linear_2) | |
| def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): | |
| timesteps_proj = self.time_proj(timestep) | |
| timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) | |
| if self.use_additional_conditions: | |
| resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype) | |
| resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1) | |
| aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype) | |
| aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1) | |
| conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1) | |
| else: | |
| conditioning = timesteps_emb | |
| return conditioning | |
| class AdaLayerNormSingle(nn.Module): | |
| r""" | |
| Norm layer adaptive layer norm single (adaLN-single). | |
| As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| use_additional_conditions (`bool`): To use additional conditions for normalization or not. | |
| """ | |
| def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): | |
| super().__init__() | |
| self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( | |
| embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions | |
| ) | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
| def forward( | |
| self, | |
| timestep: torch.Tensor, | |
| added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
| batch_size: Optional[int] = None, | |
| hidden_dtype: Optional[torch.dtype] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| # No modulation happening here. | |
| embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype) | |
| return self.linear(self.silu(embedded_timestep)), embedded_timestep | |
| class TimePositionalEncoding(nn.Module): | |
| def __init__( | |
| self, | |
| d_model, | |
| dropout = 0., | |
| max_len = 24 | |
| ): | |
| super().__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| position = torch.arange(max_len).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) | |
| pe = torch.zeros(1, max_len, d_model) | |
| pe[0, :, 0::2] = torch.sin(position * div_term) | |
| pe[0, :, 1::2] = torch.cos(position * div_term) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| b, c, f, h, w = x.size() | |
| x = rearrange(x, "b c f h w -> (b h w) f c") | |
| x = x + self.pe[:, :x.size(1)] | |
| x = rearrange(x, "(b h w) f c -> b c f h w", b=b, h=h, w=w) | |
| return self.dropout(x) | |
| class Transformer3DModelOutput(BaseOutput): | |
| """ | |
| The output of [`Transformer2DModel`]. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
| The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
| distributions for the unnoised latent pixels. | |
| """ | |
| sample: torch.FloatTensor | |
| class Transformer3DModel(ModelMixin, ConfigMixin): | |
| """ | |
| A 3D Transformer model for image-like data. | |
| Parameters: | |
| num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
| in_channels (`int`, *optional*): | |
| The number of channels in the input and output (specify if the input is **continuous**). | |
| num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
| sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
| This is fixed during training since it is used to learn a number of position embeddings. | |
| num_vector_embeds (`int`, *optional*): | |
| The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). | |
| Includes the class for the masked latent pixel. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
| num_embeds_ada_norm ( `int`, *optional*): | |
| The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
| `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
| added to the hidden states. | |
| During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. | |
| attention_bias (`bool`, *optional*): | |
| Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| sample_size: Optional[int] = None, | |
| num_vector_embeds: Optional[int] = None, | |
| patch_size: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_type: str = "layer_norm", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| attention_type: str = "default", | |
| caption_channels: int = None, | |
| # block type | |
| basic_block_type: str = "motionmodule", | |
| # enable_uvit | |
| enable_uvit: bool = False, | |
| # 3d patch params | |
| patch_3d: bool = False, | |
| fake_3d: bool = False, | |
| time_patch_size: Optional[int] = None, | |
| casual_3d: bool = False, | |
| casual_3d_upsampler_index: Optional[list] = None, | |
| # motion module kwargs | |
| motion_module_type = "VanillaGrid", | |
| motion_module_kwargs = None, | |
| # time position encoding | |
| time_position_encoding_before_transformer = False | |
| ): | |
| super().__init__() | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| self.enable_uvit = enable_uvit | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.basic_block_type = basic_block_type | |
| self.patch_3d = patch_3d | |
| self.fake_3d = fake_3d | |
| self.casual_3d = casual_3d | |
| self.casual_3d_upsampler_index = casual_3d_upsampler_index | |
| conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv | |
| linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear | |
| assert sample_size is not None, "Transformer3DModel over patched input must provide sample_size" | |
| self.height = sample_size | |
| self.width = sample_size | |
| self.patch_size = patch_size | |
| self.time_patch_size = self.patch_size if time_patch_size is None else time_patch_size | |
| interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1 | |
| interpolation_scale = max(interpolation_scale, 1) | |
| if self.casual_3d: | |
| self.pos_embed = CasualPatchEmbed3D( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| time_patch_size=self.time_patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| elif self.patch_3d: | |
| if self.fake_3d: | |
| self.pos_embed = PatchEmbedF3D( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| else: | |
| self.pos_embed = PatchEmbed3D( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| time_patch_size=self.time_patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| else: | |
| self.pos_embed = PatchEmbed( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| # 3. Define transformers blocks | |
| if self.basic_block_type == "motionmodule": | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| elif self.basic_block_type == "kvcompression_motionmodule": | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| TemporalTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| kvcompression=False if d < 14 else True, | |
| motion_module_type=motion_module_type, | |
| motion_module_kwargs=motion_module_kwargs, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| elif self.basic_block_type == "selfattentiontemporal": | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| SelfAttentionTemporalTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| else: | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| if self.casual_3d: | |
| self.unpatch1d = TemporalUpsampler3D() | |
| elif self.patch_3d and self.fake_3d: | |
| self.unpatch1d = UnPatch1D(inner_dim, True) | |
| if self.enable_uvit: | |
| self.long_connect_fc = nn.ModuleList( | |
| [ | |
| nn.Linear(inner_dim, inner_dim, True) for d in range(13) | |
| ] | |
| ) | |
| for index in range(13): | |
| self.long_connect_fc[index] = zero_module(self.long_connect_fc[index]) | |
| # 4. Define output layers | |
| self.out_channels = in_channels if out_channels is None else out_channels | |
| if norm_type != "ada_norm_single": | |
| self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) | |
| if self.patch_3d and not self.fake_3d: | |
| self.proj_out_2 = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels) | |
| else: | |
| self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
| elif norm_type == "ada_norm_single": | |
| self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) | |
| if self.patch_3d and not self.fake_3d: | |
| self.proj_out = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels) | |
| else: | |
| self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
| # 5. PixArt-Alpha blocks. | |
| self.adaln_single = None | |
| self.use_additional_conditions = False | |
| if norm_type == "ada_norm_single": | |
| self.use_additional_conditions = self.config.sample_size == 128 | |
| # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use | |
| # additional conditions until we find better name | |
| self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) | |
| self.caption_projection = None | |
| if caption_channels is not None: | |
| self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) | |
| self.gradient_checkpointing = False | |
| self.time_position_encoding_before_transformer = time_position_encoding_before_transformer | |
| if self.time_position_encoding_before_transformer: | |
| self.t_pos = TimePositionalEncoding(max_len = 4096, d_model = inner_dim) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| inpaint_latents: torch.Tensor = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| The [`Transformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
| Input `hidden_states`. | |
| encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
| self-attention. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
| class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
| Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
| `AdaLayerZeroNorm`. | |
| cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| attention_mask ( `torch.Tensor`, *optional*): | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
| is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
| negative values to the attention scores corresponding to "discard" tokens. | |
| encoder_attention_mask ( `torch.Tensor`, *optional*): | |
| Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
| * Mask `(batch, sequence_length)` True = keep, False = discard. | |
| * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
| If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
| above. This bias will be added to the cross-attention scores. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer3DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
| # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
| # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None and attention_mask.ndim == 2: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
| encoder_attention_mask = (1 - encoder_attention_mask.to(encoder_hidden_states.dtype)) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| if inpaint_latents is not None: | |
| hidden_states = torch.concat([hidden_states, inpaint_latents], 1) | |
| # 1. Input | |
| if self.casual_3d: | |
| video_length, height, width = (hidden_states.shape[-3] - 1) // self.time_patch_size + 1, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
| elif self.patch_3d: | |
| video_length, height, width = hidden_states.shape[-3] // self.time_patch_size, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
| else: | |
| video_length, height, width = hidden_states.shape[-3], hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
| hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w") | |
| hidden_states = self.pos_embed(hidden_states) | |
| if self.adaln_single is not None: | |
| if self.use_additional_conditions and added_cond_kwargs is None: | |
| raise ValueError( | |
| "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." | |
| ) | |
| batch_size = hidden_states.shape[0] // video_length | |
| timestep, embedded_timestep = self.adaln_single( | |
| timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
| ) | |
| hidden_states = rearrange(hidden_states, "(b f) (h w) c -> b c f h w", f=video_length, h=height, w=width) | |
| # hidden_states | |
| # bs, c, f, h, w => b (f h w ) c | |
| if self.time_position_encoding_before_transformer: | |
| hidden_states = self.t_pos(hidden_states) | |
| hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
| # 2. Blocks | |
| if self.caption_projection is not None: | |
| batch_size = hidden_states.shape[0] | |
| encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
| encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
| skips = [] | |
| skip_index = 0 | |
| for index, block in enumerate(self.transformer_blocks): | |
| if self.enable_uvit: | |
| if index >= 15: | |
| long_connect = self.long_connect_fc[skip_index](skips.pop()) | |
| hidden_states = hidden_states + long_connect | |
| skip_index += 1 | |
| if self.casual_3d_upsampler_index is not None and index in self.casual_3d_upsampler_index: | |
| hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=video_length, h=height, w=width) | |
| hidden_states = self.unpatch1d(hidden_states) | |
| video_length = (video_length - 1) * 2 + 1 | |
| hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c", f=video_length, h=height, w=width) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| args = { | |
| "basic": [], | |
| "motionmodule": [video_length, height, width], | |
| "selfattentiontemporal": [video_length, height, width], | |
| "kvcompression_motionmodule": [video_length, height, width], | |
| }[self.basic_block_type] | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| attention_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| timestep, | |
| cross_attention_kwargs, | |
| class_labels, | |
| *args, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| kwargs = { | |
| "basic": {}, | |
| "motionmodule": {"num_frames":video_length, "height":height, "width":width}, | |
| "selfattentiontemporal": {"num_frames":video_length, "height":height, "width":width}, | |
| "kvcompression_motionmodule": {"num_frames":video_length, "height":height, "width":width}, | |
| }[self.basic_block_type] | |
| hidden_states = block( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| timestep=timestep, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| class_labels=class_labels, | |
| **kwargs | |
| ) | |
| if self.enable_uvit: | |
| if index < 13: | |
| skips.append(hidden_states) | |
| if self.fake_3d and self.patch_3d: | |
| hidden_states = rearrange(hidden_states, "b (f h w) c -> (b h w) c f", f=video_length, w=width, h=height) | |
| hidden_states = self.unpatch1d(hidden_states) | |
| hidden_states = rearrange(hidden_states, "(b h w) c f -> b (f h w) c", w=width, h=height) | |
| # 3. Output | |
| if self.config.norm_type != "ada_norm_single": | |
| conditioning = self.transformer_blocks[0].norm1.emb( | |
| timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
| hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
| hidden_states = self.proj_out_2(hidden_states) | |
| elif self.config.norm_type == "ada_norm_single": | |
| shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
| hidden_states = self.norm_out(hidden_states) | |
| # Modulation | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.squeeze(1) | |
| # unpatchify | |
| if self.adaln_single is None: | |
| height = width = int(hidden_states.shape[1] ** 0.5) | |
| if self.patch_3d: | |
| if self.fake_3d: | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, video_length * self.patch_size, height, width, self.patch_size, self.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states) | |
| else: | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, video_length, height, width, self.time_patch_size, self.patch_size, self.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nfhwopqc->ncfohpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(-1, self.out_channels, video_length * self.time_patch_size, height * self.patch_size, width * self.patch_size) | |
| ) | |
| else: | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, video_length, height, width, self.patch_size, self.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(-1, self.out_channels, video_length, height * self.patch_size, width * self.patch_size) | |
| ) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer3DModelOutput(sample=output) | |
| def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, patch_size=2, transformer_additional_kwargs={}): | |
| if subfolder is not None: | |
| pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
| print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| from diffusers.utils import WEIGHTS_NAME | |
| model = cls.from_config(config, **transformer_additional_kwargs) | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| model_file_safetensors = model_file.replace(".bin", ".safetensors") | |
| if os.path.exists(model_file_safetensors): | |
| from safetensors.torch import load_file, safe_open | |
| state_dict = load_file(model_file_safetensors) | |
| else: | |
| if not os.path.isfile(model_file): | |
| raise RuntimeError(f"{model_file} does not exist") | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| if model.state_dict()['pos_embed.proj.weight'].size() != state_dict['pos_embed.proj.weight'].size(): | |
| new_shape = model.state_dict()['pos_embed.proj.weight'].size() | |
| if len(new_shape) == 5: | |
| state_dict['pos_embed.proj.weight'] = state_dict['pos_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() | |
| state_dict['pos_embed.proj.weight'][:, :, :-1] = 0 | |
| else: | |
| model.state_dict()['pos_embed.proj.weight'][:, :4, :, :] = state_dict['pos_embed.proj.weight'] | |
| model.state_dict()['pos_embed.proj.weight'][:, 4:, :, :] = 0 | |
| state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight'] | |
| if model.state_dict()['proj_out.weight'].size() != state_dict['proj_out.weight'].size(): | |
| new_shape = model.state_dict()['proj_out.weight'].size() | |
| state_dict['proj_out.weight'] = torch.tile(state_dict['proj_out.weight'], [patch_size, 1]) | |
| if model.state_dict()['proj_out.bias'].size() != state_dict['proj_out.bias'].size(): | |
| new_shape = model.state_dict()['proj_out.bias'].size() | |
| state_dict['proj_out.bias'] = torch.tile(state_dict['proj_out.bias'], [patch_size]) | |
| tmp_state_dict = {} | |
| for key in state_dict: | |
| if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): | |
| tmp_state_dict[key] = state_dict[key] | |
| else: | |
| print(key, "Size don't match, skip") | |
| state_dict = tmp_state_dict | |
| m, u = model.load_state_dict(state_dict, strict=False) | |
| print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") | |
| params = [p.numel() if "attn_temporal." in n else 0 for n, p in model.named_parameters()] | |
| print(f"### Attn temporal Parameters: {sum(params) / 1e6} M") | |
| return model |