Update app.py
Browse files
app.py
CHANGED
|
@@ -1,43 +1,49 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from llama_cpp import Llama
|
|
|
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
# llama_cpp automatically downloads from HF Hub if you provide the repo
|
| 10 |
-
llm = Llama.from_pretrained(
|
| 11 |
-
repo_id="astegaras/merged_kaggle",
|
| 12 |
-
filename="llama-3.2-3b-instruct.Q4_K_M.gguf",
|
| 13 |
)
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
def
|
|
|
|
| 20 |
messages = []
|
| 21 |
-
|
| 22 |
for user, assistant in history:
|
| 23 |
messages.append({"role": "user", "content": user})
|
| 24 |
messages.append({"role": "assistant", "content": assistant})
|
| 25 |
|
| 26 |
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
output = llm.create_chat_completion(
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
|
|
|
| 31 |
return reply
|
| 32 |
|
| 33 |
-
# ----------------------------------------------------
|
| 34 |
-
# Launch Gradio app
|
| 35 |
-
# ----------------------------------------------------
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from llama_cpp import Llama
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
|
| 5 |
+
# Download your GGUF model from HF Hub
|
| 6 |
+
model_path = hf_hub_download(
|
| 7 |
+
repo_id="astegaras/merged_kaggle",
|
| 8 |
+
filename="llama-3.2-3b-instruct.Q4_K_M.gguf"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
)
|
| 10 |
|
| 11 |
+
# Load the GGUF model with llama.cpp
|
| 12 |
+
llm = Llama(
|
| 13 |
+
model_path=model_path,
|
| 14 |
+
n_ctx=4096, # Context window for inference
|
| 15 |
+
n_threads=8, # Adjust to HF hardware
|
| 16 |
+
n_batch=512,
|
| 17 |
+
verbose=False
|
| 18 |
+
)
|
| 19 |
|
| 20 |
+
def chat_fn(message, history):
|
| 21 |
+
# Reformat history for llama.cpp chat template
|
| 22 |
messages = []
|
|
|
|
| 23 |
for user, assistant in history:
|
| 24 |
messages.append({"role": "user", "content": user})
|
| 25 |
messages.append({"role": "assistant", "content": assistant})
|
| 26 |
|
| 27 |
messages.append({"role": "user", "content": message})
|
| 28 |
|
| 29 |
+
output = llm.create_chat_completion(
|
| 30 |
+
messages=messages,
|
| 31 |
+
max_tokens=512,
|
| 32 |
+
temperature=0.7,
|
| 33 |
+
top_p=0.9
|
| 34 |
+
)
|
| 35 |
|
| 36 |
+
reply = output["choices"][0]["message"]["content"]
|
| 37 |
return reply
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# Gradio UI
|
| 41 |
+
chatbot = gr.ChatInterface(
|
| 42 |
+
fn=chat_fn,
|
| 43 |
+
title="Merged Kaggle Model (GGUF)",
|
| 44 |
+
description="Running llama.cpp inference on GGUF model",
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
chatbot.launch()
|
| 48 |
|
| 49 |
|