iris / app.py
astegaras's picture
Update app.py
2fb80ad verified
raw
history blame
1.25 kB
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Download GGUF from your HF repo
model_path = hf_hub_download(
repo_id="astegaras/Llama3.2_3B",
filename="model-Q2_K.gguf"
)
# Load model (llama.cpp)
llm = Llama(
model_path=model_path,
n_ctx=4096,
chat_format=None,
n_gpu_layers=0,
add_bos_token=False,
add_eos_token=False,
)
# Build inference prompt according to your dataset format
def format_prompt(user_message):
return (
"<|begin_of_text|>"
"<|start_header_id|>system<|end_header_id|>\n"
"You are a helpful assistant.\n"
"<|start_header_id|>user<|end_header_id|>\n"
f"{user_message}\n"
"<|start_header_id|>assistant<|end_header_id|>\n"
)
def respond(user_input):
prompt = format_prompt(user_input)
output = llm(
prompt,
max_tokens=512,
temperature=0.7,
top_p=0.9,
stop=["<|user|>", "<|system|>"], # avoid looping
)
return output["choices"][0]["text"]
# Gradio UI
gr.Interface(
fn=respond,
inputs=gr.components.Textbox(label="Ask"),
outputs=gr.components.Textbox(label="Answer"),
title="Llama3.2-3B Fine-tuned Assistant"
).launch()