Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| """ | |
| RoBERTa: A Robustly Optimized BERT Pretraining Approach. | |
| """ | |
| import logging | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from fairseq import utils | |
| from fairseq.models import ( | |
| FairseqEncoder, | |
| FairseqEncoderModel, | |
| register_model, | |
| register_model_architecture, | |
| ) | |
| from fairseq.models.transformer import DEFAULT_MIN_PARAMS_TO_WRAP, TransformerEncoder | |
| from fairseq.modules import LayerNorm | |
| from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ | |
| from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
| from fairseq.utils import safe_getattr, safe_hasattr | |
| from .hub_interface import RobertaHubInterface | |
| logger = logging.getLogger(__name__) | |
| class RobertaModel(FairseqEncoderModel): | |
| def hub_models(cls): | |
| return { | |
| "roberta.base": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz", | |
| "roberta.large": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz", | |
| "roberta.large.mnli": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz", | |
| "roberta.large.wsc": "http://dl.fbaipublicfiles.com/fairseq/models/roberta.large.wsc.tar.gz", | |
| } | |
| def __init__(self, args, encoder): | |
| super().__init__(encoder) | |
| self.args = args | |
| # We follow BERT's random weight initialization | |
| self.apply(init_bert_params) | |
| self.classification_heads = nn.ModuleDict() | |
| def add_args(parser): | |
| """Add model-specific arguments to the parser.""" | |
| parser.add_argument( | |
| "--encoder-layers", type=int, metavar="L", help="num encoder layers" | |
| ) | |
| parser.add_argument( | |
| "--encoder-embed-dim", | |
| type=int, | |
| metavar="H", | |
| help="encoder embedding dimension", | |
| ) | |
| parser.add_argument( | |
| "--encoder-ffn-embed-dim", | |
| type=int, | |
| metavar="F", | |
| help="encoder embedding dimension for FFN", | |
| ) | |
| parser.add_argument( | |
| "--encoder-attention-heads", | |
| type=int, | |
| metavar="A", | |
| help="num encoder attention heads", | |
| ) | |
| parser.add_argument( | |
| "--activation-fn", | |
| choices=utils.get_available_activation_fns(), | |
| help="activation function to use", | |
| ) | |
| parser.add_argument( | |
| "--pooler-activation-fn", | |
| choices=utils.get_available_activation_fns(), | |
| help="activation function to use for pooler layer", | |
| ) | |
| parser.add_argument( | |
| "--encoder-normalize-before", | |
| action="store_true", | |
| help="apply layernorm before each encoder block", | |
| ) | |
| parser.add_argument( | |
| "--layernorm-embedding", | |
| action="store_true", | |
| help="add layernorm to embedding", | |
| ) | |
| parser.add_argument( | |
| "--dropout", type=float, metavar="D", help="dropout probability" | |
| ) | |
| parser.add_argument( | |
| "--attention-dropout", | |
| type=float, | |
| metavar="D", | |
| help="dropout probability for attention weights", | |
| ) | |
| parser.add_argument( | |
| "--activation-dropout", | |
| type=float, | |
| metavar="D", | |
| help="dropout probability after activation in FFN", | |
| ) | |
| parser.add_argument( | |
| "--pooler-dropout", | |
| type=float, | |
| metavar="D", | |
| help="dropout probability in the masked_lm pooler layers", | |
| ) | |
| parser.add_argument( | |
| "--max-positions", type=int, help="number of positional embeddings to learn" | |
| ) | |
| parser.add_argument( | |
| "--load-checkpoint-heads", | |
| action="store_true", | |
| help="(re-)register and load heads when loading checkpoints", | |
| ) | |
| parser.add_argument( | |
| "--untie-weights-roberta", | |
| action="store_true", | |
| help="Untie weights between embeddings and classifiers in RoBERTa", | |
| ) | |
| # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) | |
| parser.add_argument( | |
| "--encoder-layerdrop", | |
| type=float, | |
| metavar="D", | |
| default=0, | |
| help="LayerDrop probability for encoder", | |
| ) | |
| parser.add_argument( | |
| "--encoder-layers-to-keep", | |
| default=None, | |
| help="which layers to *keep* when pruning as a comma-separated list", | |
| ) | |
| # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) | |
| parser.add_argument( | |
| "--quant-noise-pq", | |
| type=float, | |
| metavar="D", | |
| default=0, | |
| help="iterative PQ quantization noise at training time", | |
| ) | |
| parser.add_argument( | |
| "--quant-noise-pq-block-size", | |
| type=int, | |
| metavar="D", | |
| default=8, | |
| help="block size of quantization noise at training time", | |
| ) | |
| parser.add_argument( | |
| "--quant-noise-scalar", | |
| type=float, | |
| metavar="D", | |
| default=0, | |
| help="scalar quantization noise and scalar quantization at training time", | |
| ) | |
| # args for "Better Fine-Tuning by Reducing Representational Collapse" (Aghajanyan et al. 2020) | |
| parser.add_argument( | |
| "--spectral-norm-classification-head", | |
| action="store_true", | |
| default=False, | |
| help="Apply spectral normalization on the classification head", | |
| ) | |
| # args for Fully Sharded Data Parallel (FSDP) training | |
| parser.add_argument( | |
| "--min-params-to-wrap", | |
| type=int, | |
| metavar="D", | |
| default=DEFAULT_MIN_PARAMS_TO_WRAP, | |
| help=( | |
| "minimum number of params for a layer to be wrapped with FSDP() when " | |
| "training with --ddp-backend=fully_sharded. Smaller values will " | |
| "improve memory efficiency, but may make torch.distributed " | |
| "communication less efficient due to smaller input sizes. This option " | |
| "is set to 0 (i.e., always wrap) when --checkpoint-activations or " | |
| "--offload-activations are passed." | |
| ), | |
| ) | |
| # args for AdaPruning | |
| # In short, it adds regularizarion for the multihead attention module and feed forward neural nets | |
| # For more details, please refer to the paper https://openreview.net/forum?id=_CMSV7FTzGI | |
| parser.add_argument( | |
| "--mha-reg-scale-factor", | |
| type=float, | |
| metavar="D", | |
| default=0.0, | |
| help="scaling factor for regularization term in adptive pruning, recommendation is 0.000375", | |
| ) | |
| parser.add_argument( | |
| "--ffn-reg-scale-factor", | |
| type=float, | |
| metavar="D", | |
| default=0.0, | |
| help="scaling factor for regularization term in adptive pruning, recommendation is 0.000375", | |
| ) | |
| parser.add_argument( | |
| "--mha-heads-to-keep", | |
| type=int, | |
| metavar="D", | |
| default=-1, | |
| help="number of heads to keep in each multi-head attention module, -1 means keeping all heads", | |
| ) | |
| parser.add_argument( | |
| "--ffn-blocks-to-remove", | |
| type=int, | |
| metavar="D", | |
| default=-1, | |
| help="number of feedforward blocks to remove in each transformer layer, -1 means keeping all ffn blocks", | |
| ) | |
| def build_model(cls, args, task): | |
| """Build a new model instance.""" | |
| from omegaconf import OmegaConf | |
| if OmegaConf.is_config(args): | |
| OmegaConf.set_struct(args, False) | |
| # make sure all arguments are present | |
| base_architecture(args) | |
| if not safe_hasattr(args, "max_positions"): | |
| if not safe_hasattr(args, "tokens_per_sample"): | |
| args.tokens_per_sample = task.max_positions() | |
| args.max_positions = args.tokens_per_sample | |
| encoder = RobertaEncoder(args, task.source_dictionary) | |
| if OmegaConf.is_config(args): | |
| OmegaConf.set_struct(args, True) | |
| return cls(args, encoder) | |
| def forward( | |
| self, | |
| src_tokens, | |
| features_only=False, | |
| return_all_hiddens=False, | |
| classification_head_name=None, | |
| **kwargs, | |
| ): | |
| if classification_head_name is not None: | |
| features_only = True | |
| x, extra = self.encoder(src_tokens, features_only, return_all_hiddens, **kwargs) | |
| if classification_head_name is not None: | |
| x = self.classification_heads[classification_head_name](x) | |
| return x, extra | |
| def _get_adaptive_head_loss(self): | |
| norm_loss = 0 | |
| scaling = float(self.args.mha_reg_scale_factor) | |
| for layer in self.encoder.sentence_encoder.layers: | |
| norm_loss_layer = 0 | |
| for i in range(layer.self_attn.num_heads): | |
| start_idx = i * layer.self_attn.head_dim | |
| end_idx = (i + 1) * layer.self_attn.head_dim | |
| norm_loss_layer += scaling * ( | |
| torch.sum( | |
| torch.abs( | |
| layer.self_attn.q_proj.weight[ | |
| start_idx:end_idx, | |
| ] | |
| ) | |
| ) | |
| + torch.sum( | |
| torch.abs(layer.self_attn.q_proj.bias[start_idx:end_idx]) | |
| ) | |
| ) | |
| norm_loss_layer += scaling * ( | |
| torch.sum( | |
| torch.abs( | |
| layer.self_attn.k_proj.weight[ | |
| start_idx:end_idx, | |
| ] | |
| ) | |
| ) | |
| + torch.sum( | |
| torch.abs(layer.self_attn.k_proj.bias[start_idx:end_idx]) | |
| ) | |
| ) | |
| norm_loss_layer += scaling * ( | |
| torch.sum( | |
| torch.abs( | |
| layer.self_attn.v_proj.weight[ | |
| start_idx:end_idx, | |
| ] | |
| ) | |
| ) | |
| + torch.sum( | |
| torch.abs(layer.self_attn.v_proj.bias[start_idx:end_idx]) | |
| ) | |
| ) | |
| norm_loss += norm_loss_layer | |
| return norm_loss | |
| def _get_adaptive_ffn_loss(self): | |
| ffn_scale_factor = float(self.args.ffn_reg_scale_factor) | |
| filter_loss = 0 | |
| for layer in self.encoder.sentence_encoder.layers: | |
| filter_loss += torch.sum( | |
| torch.abs(layer.fc1.weight * ffn_scale_factor) | |
| ) + torch.sum(torch.abs(layer.fc2.weight * ffn_scale_factor)) | |
| filter_loss += torch.sum( | |
| torch.abs(layer.fc1.bias * ffn_scale_factor) | |
| ) + torch.sum(torch.abs(layer.fc2.bias * ffn_scale_factor)) | |
| return filter_loss | |
| def get_normalized_probs(self, net_output, log_probs, sample=None): | |
| """Get normalized probabilities (or log probs) from a net's output.""" | |
| logits = net_output[0].float() | |
| if log_probs: | |
| return F.log_softmax(logits, dim=-1) | |
| else: | |
| return F.softmax(logits, dim=-1) | |
| def register_classification_head( | |
| self, name, num_classes=None, inner_dim=None, **kwargs | |
| ): | |
| """Register a classification head.""" | |
| if name in self.classification_heads: | |
| prev_num_classes = self.classification_heads[name].out_proj.out_features | |
| prev_inner_dim = self.classification_heads[name].dense.out_features | |
| if num_classes != prev_num_classes or inner_dim != prev_inner_dim: | |
| logger.warning( | |
| 're-registering head "{}" with num_classes {} (prev: {}) ' | |
| "and inner_dim {} (prev: {})".format( | |
| name, num_classes, prev_num_classes, inner_dim, prev_inner_dim | |
| ) | |
| ) | |
| self.classification_heads[name] = RobertaClassificationHead( | |
| input_dim=self.args.encoder_embed_dim, | |
| inner_dim=inner_dim or self.args.encoder_embed_dim, | |
| num_classes=num_classes, | |
| activation_fn=self.args.pooler_activation_fn, | |
| pooler_dropout=self.args.pooler_dropout, | |
| q_noise=self.args.quant_noise_pq, | |
| qn_block_size=self.args.quant_noise_pq_block_size, | |
| do_spectral_norm=self.args.spectral_norm_classification_head, | |
| ) | |
| def supported_targets(self): | |
| return {"self"} | |
| def from_pretrained( | |
| cls, | |
| model_name_or_path, | |
| checkpoint_file="model.pt", | |
| data_name_or_path=".", | |
| bpe="gpt2", | |
| **kwargs, | |
| ): | |
| from fairseq import hub_utils | |
| x = hub_utils.from_pretrained( | |
| model_name_or_path, | |
| checkpoint_file, | |
| data_name_or_path, | |
| archive_map=cls.hub_models(), | |
| bpe=bpe, | |
| load_checkpoint_heads=True, | |
| **kwargs, | |
| ) | |
| logger.info(x["args"]) | |
| return RobertaHubInterface(x["args"], x["task"], x["models"][0]) | |
| def upgrade_state_dict_named(self, state_dict, name): | |
| prefix = name + "." if name != "" else "" | |
| # rename decoder -> encoder before upgrading children modules | |
| for k in list(state_dict.keys()): | |
| if k.startswith(prefix + "decoder"): | |
| new_k = prefix + "encoder" + k[len(prefix + "decoder") :] | |
| state_dict[new_k] = state_dict[k] | |
| del state_dict[k] | |
| # rename emb_layer_norm -> layernorm_embedding | |
| for k in list(state_dict.keys()): | |
| if ".emb_layer_norm." in k: | |
| new_k = k.replace(".emb_layer_norm.", ".layernorm_embedding.") | |
| state_dict[new_k] = state_dict[k] | |
| del state_dict[k] | |
| # upgrade children modules | |
| super().upgrade_state_dict_named(state_dict, name) | |
| # Handle new classification heads present in the state dict. | |
| current_head_names = ( | |
| [] | |
| if not hasattr(self, "classification_heads") | |
| else self.classification_heads.keys() | |
| ) | |
| keys_to_delete = [] | |
| for k in state_dict.keys(): | |
| if not k.startswith(prefix + "classification_heads."): | |
| continue | |
| head_name = k[len(prefix + "classification_heads.") :].split(".")[0] | |
| num_classes = state_dict[ | |
| prefix + "classification_heads." + head_name + ".out_proj.weight" | |
| ].size(0) | |
| inner_dim = state_dict[ | |
| prefix + "classification_heads." + head_name + ".dense.weight" | |
| ].size(0) | |
| if getattr(self.args, "load_checkpoint_heads", False): | |
| if head_name not in current_head_names: | |
| self.register_classification_head(head_name, num_classes, inner_dim) | |
| else: | |
| if head_name not in current_head_names: | |
| logger.warning( | |
| "deleting classification head ({}) from checkpoint " | |
| "not present in current model: {}".format(head_name, k) | |
| ) | |
| keys_to_delete.append(k) | |
| elif ( | |
| num_classes | |
| != self.classification_heads[head_name].out_proj.out_features | |
| or inner_dim | |
| != self.classification_heads[head_name].dense.out_features | |
| ): | |
| logger.warning( | |
| "deleting classification head ({}) from checkpoint " | |
| "with different dimensions than current model: {}".format( | |
| head_name, k | |
| ) | |
| ) | |
| keys_to_delete.append(k) | |
| for k in keys_to_delete: | |
| del state_dict[k] | |
| # Copy any newly-added classification heads into the state dict | |
| # with their current weights. | |
| if hasattr(self, "classification_heads"): | |
| cur_state = self.classification_heads.state_dict() | |
| for k, v in cur_state.items(): | |
| if prefix + "classification_heads." + k not in state_dict: | |
| logger.info("Overwriting " + prefix + "classification_heads." + k) | |
| state_dict[prefix + "classification_heads." + k] = v | |
| # adapt data2vec models | |
| if ( | |
| "encoder._ema" in state_dict | |
| and "encoder.lm_head.weight" not in state_dict | |
| ): | |
| lm_state = self.encoder.lm_head.state_dict() | |
| for k, v in lm_state.items(): | |
| state_dict["encoder.lm_head." + k] = v | |
| for k in list(state_dict.keys()): | |
| if k.startswith("encoder.regression_head") or k == "encoder._ema": | |
| del state_dict[k] | |
| class RobertaLMHead(nn.Module): | |
| """Head for masked language modeling.""" | |
| def __init__(self, embed_dim, output_dim, activation_fn, weight=None): | |
| super().__init__() | |
| self.dense = nn.Linear(embed_dim, embed_dim) | |
| self.activation_fn = utils.get_activation_fn(activation_fn) | |
| self.layer_norm = LayerNorm(embed_dim) | |
| if weight is None: | |
| weight = nn.Linear(embed_dim, output_dim, bias=False).weight | |
| self.weight = weight | |
| self.bias = nn.Parameter(torch.zeros(output_dim)) | |
| def forward(self, features, masked_tokens=None, **kwargs): | |
| # Only project the masked tokens while training, | |
| # saves both memory and computation | |
| if masked_tokens is not None: | |
| features = features[masked_tokens, :] | |
| x = self.dense(features) | |
| x = self.activation_fn(x) | |
| x = self.layer_norm(x) | |
| # project back to size of vocabulary with bias | |
| x = F.linear(x, self.weight) + self.bias | |
| return x | |
| class RobertaClassificationHead(nn.Module): | |
| """Head for sentence-level classification tasks.""" | |
| def __init__( | |
| self, | |
| input_dim, | |
| inner_dim, | |
| num_classes, | |
| activation_fn, | |
| pooler_dropout, | |
| q_noise=0, | |
| qn_block_size=8, | |
| do_spectral_norm=False, | |
| ): | |
| super().__init__() | |
| self.dense = nn.Linear(input_dim, inner_dim) | |
| self.activation_fn = utils.get_activation_fn(activation_fn) | |
| self.dropout = nn.Dropout(p=pooler_dropout) | |
| self.out_proj = apply_quant_noise_( | |
| nn.Linear(inner_dim, num_classes), q_noise, qn_block_size | |
| ) | |
| if do_spectral_norm: | |
| if q_noise != 0: | |
| raise NotImplementedError( | |
| "Attempting to use Spectral Normalization with Quant Noise. This is not officially supported" | |
| ) | |
| self.out_proj = torch.nn.utils.spectral_norm(self.out_proj) | |
| def forward(self, features, **kwargs): | |
| x = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
| x = self.dropout(x) | |
| x = self.dense(x) | |
| x = self.activation_fn(x) | |
| x = self.dropout(x) | |
| x = self.out_proj(x) | |
| return x | |
| class RobertaEncoder(FairseqEncoder): | |
| """RoBERTa encoder.""" | |
| def __init__(self, args, dictionary): | |
| super().__init__(dictionary) | |
| # set any missing default values | |
| base_architecture(args) | |
| self.args = args | |
| if args.encoder_layers_to_keep: | |
| args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) | |
| embed_tokens = self.build_embedding( | |
| len(dictionary), args.encoder_embed_dim, dictionary.pad() | |
| ) | |
| self.sentence_encoder = self.build_encoder(args, dictionary, embed_tokens) | |
| self.lm_head = self.build_lm_head( | |
| embed_dim=args.encoder_embed_dim, | |
| output_dim=len(dictionary), | |
| activation_fn=args.activation_fn, | |
| weight=( | |
| self.sentence_encoder.embed_tokens.weight | |
| if not args.untie_weights_roberta | |
| else None | |
| ), | |
| ) | |
| def build_embedding(self, vocab_size, embedding_dim, padding_idx): | |
| return nn.Embedding(vocab_size, embedding_dim, padding_idx) | |
| def build_encoder(self, args, dictionary, embed_tokens): | |
| encoder = TransformerEncoder(args, dictionary, embed_tokens) | |
| encoder.apply(init_bert_params) | |
| return encoder | |
| def build_lm_head(self, embed_dim, output_dim, activation_fn, weight): | |
| return RobertaLMHead(embed_dim, output_dim, activation_fn, weight) | |
| def forward( | |
| self, | |
| src_tokens, | |
| features_only=False, | |
| return_all_hiddens=False, | |
| masked_tokens=None, | |
| **unused, | |
| ): | |
| """ | |
| Args: | |
| src_tokens (LongTensor): input tokens of shape `(batch, src_len)` | |
| features_only (bool, optional): skip LM head and just return | |
| features. If True, the output will be of shape | |
| `(batch, src_len, embed_dim)`. | |
| return_all_hiddens (bool, optional): also return all of the | |
| intermediate hidden states (default: False). | |
| Returns: | |
| tuple: | |
| - the LM output of shape `(batch, src_len, vocab)` | |
| - a dictionary of additional data, where 'inner_states' | |
| is a list of hidden states. Note that the hidden | |
| states have shape `(src_len, batch, vocab)`. | |
| """ | |
| x, extra = self.extract_features( | |
| src_tokens, return_all_hiddens=return_all_hiddens | |
| ) | |
| if not features_only: | |
| x = self.output_layer(x, masked_tokens=masked_tokens) | |
| return x, extra | |
| def extract_features(self, src_tokens, return_all_hiddens=False, **kwargs): | |
| encoder_out = self.sentence_encoder( | |
| src_tokens, | |
| return_all_hiddens=return_all_hiddens, | |
| token_embeddings=kwargs.get("token_embeddings", None), | |
| ) | |
| # T x B x C -> B x T x C | |
| features = encoder_out["encoder_out"][0].transpose(0, 1) | |
| inner_states = encoder_out["encoder_states"] if return_all_hiddens else None | |
| return features, {"inner_states": inner_states} | |
| def output_layer(self, features, masked_tokens=None, **unused): | |
| return self.lm_head(features, masked_tokens) | |
| def max_positions(self): | |
| """Maximum output length supported by the encoder.""" | |
| return self.args.max_positions | |
| def base_architecture(args): | |
| args.encoder_layers = safe_getattr(args, "encoder_layers", 12) | |
| args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 768) | |
| args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 3072) | |
| args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 12) | |
| args.dropout = safe_getattr(args, "dropout", 0.1) | |
| args.attention_dropout = safe_getattr(args, "attention_dropout", 0.1) | |
| args.activation_dropout = safe_getattr(args, "activation_dropout", 0.0) | |
| args.pooler_dropout = safe_getattr(args, "pooler_dropout", 0.0) | |
| args.max_source_positions = safe_getattr(args, "max_positions", 512) | |
| args.no_token_positional_embeddings = safe_getattr( | |
| args, "no_token_positional_embeddings", False | |
| ) | |
| # BERT has a few structural differences compared to the original Transformer | |
| args.encoder_learned_pos = safe_getattr(args, "encoder_learned_pos", True) | |
| args.layernorm_embedding = safe_getattr(args, "layernorm_embedding", True) | |
| args.no_scale_embedding = safe_getattr(args, "no_scale_embedding", True) | |
| args.activation_fn = safe_getattr(args, "activation_fn", "gelu") | |
| args.encoder_normalize_before = safe_getattr( | |
| args, "encoder_normalize_before", False | |
| ) | |
| args.pooler_activation_fn = safe_getattr(args, "pooler_activation_fn", "tanh") | |
| args.untie_weights_roberta = safe_getattr(args, "untie_weights_roberta", False) | |
| # Adaptive input config | |
| args.adaptive_input = safe_getattr(args, "adaptive_input", False) | |
| # LayerDrop config | |
| args.encoder_layerdrop = safe_getattr(args, "encoder_layerdrop", 0.0) | |
| args.encoder_layers_to_keep = safe_getattr(args, "encoder_layers_to_keep", None) | |
| # Quantization noise config | |
| args.quant_noise_pq = safe_getattr(args, "quant_noise_pq", 0) | |
| args.quant_noise_pq_block_size = safe_getattr(args, "quant_noise_pq_block_size", 8) | |
| args.quant_noise_scalar = safe_getattr(args, "quant_noise_scalar", 0) | |
| # R4F config | |
| args.spectral_norm_classification_head = safe_getattr( | |
| args, "spectral_norm_classification_head", False | |
| ) | |
| def roberta_prenorm_architecture(args): | |
| args.layernorm_embedding = safe_getattr(args, "layernorm_embedding", False) | |
| args.encoder_normalize_before = safe_getattr(args, "encoder_normalize_before", True) | |
| base_architecture(args) | |
| def roberta_base_architecture(args): | |
| base_architecture(args) | |
| def roberta_large_architecture(args): | |
| args.encoder_layers = safe_getattr(args, "encoder_layers", 24) | |
| args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 1024) | |
| args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 4096) | |
| args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 16) | |
| base_architecture(args) | |
| def xlm_architecture(args): | |
| args.encoder_layers = safe_getattr(args, "encoder_layers", 16) | |
| args.encoder_embed_dim = safe_getattr(args, "encoder_embed_dim", 1280) | |
| args.encoder_ffn_embed_dim = safe_getattr(args, "encoder_ffn_embed_dim", 1280 * 4) | |
| args.encoder_attention_heads = safe_getattr(args, "encoder_attention_heads", 16) | |
| base_architecture(args) | |