Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| import os | |
| import numpy as np | |
| import torch | |
| from fairseq import utils | |
| from fairseq.data import ( | |
| ConcatDataset, | |
| Dictionary, | |
| IdDataset, | |
| MaskTokensDataset, | |
| NestedDictionaryDataset, | |
| NumelDataset, | |
| NumSamplesDataset, | |
| PadDataset, | |
| PrependTokenDataset, | |
| RawLabelDataset, | |
| ResamplingDataset, | |
| SortDataset, | |
| TokenBlockDataset, | |
| data_utils, | |
| encoders, | |
| ) | |
| from fairseq.tasks import LegacyFairseqTask, register_task | |
| logger = logging.getLogger(__name__) | |
| class MultiLingualMaskedLMTask(LegacyFairseqTask): | |
| """Task for training masked language models (e.g., BERT, RoBERTa).""" | |
| def add_args(parser): | |
| """Add task-specific arguments to the parser.""" | |
| parser.add_argument( | |
| "data", | |
| help="colon separated path to data directories list, \ | |
| will be iterated upon during epochs in round-robin manner", | |
| ) | |
| parser.add_argument( | |
| "--sample-break-mode", | |
| default="complete", | |
| choices=["none", "complete", "complete_doc", "eos"], | |
| help='If omitted or "none", fills each sample with tokens-per-sample ' | |
| 'tokens. If set to "complete", splits samples only at the end ' | |
| "of sentence, but may include multiple sentences per sample. " | |
| '"complete_doc" is similar but respects doc boundaries. ' | |
| 'If set to "eos", includes only one sentence per sample.', | |
| ) | |
| parser.add_argument( | |
| "--tokens-per-sample", | |
| default=512, | |
| type=int, | |
| help="max number of total tokens over all segments " | |
| "per sample for BERT dataset", | |
| ) | |
| parser.add_argument( | |
| "--mask-prob", | |
| default=0.15, | |
| type=float, | |
| help="probability of replacing a token with mask", | |
| ) | |
| parser.add_argument( | |
| "--leave-unmasked-prob", | |
| default=0.1, | |
| type=float, | |
| help="probability that a masked token is unmasked", | |
| ) | |
| parser.add_argument( | |
| "--random-token-prob", | |
| default=0.1, | |
| type=float, | |
| help="probability of replacing a token with a random token", | |
| ) | |
| parser.add_argument( | |
| "--freq-weighted-replacement", | |
| action="store_true", | |
| help="sample random replacement words based on word frequencies", | |
| ) | |
| parser.add_argument( | |
| "--mask-whole-words", | |
| default=False, | |
| action="store_true", | |
| help="mask whole words; you may also want to set --bpe", | |
| ) | |
| parser.add_argument( | |
| "--multilang-sampling-alpha", | |
| type=float, | |
| default=1.0, | |
| help="smoothing alpha for sample rations across multiple datasets", | |
| ) | |
| def __init__(self, args, dictionary): | |
| super().__init__(args) | |
| self.dictionary = dictionary | |
| self.seed = args.seed | |
| # add mask token | |
| self.mask_idx = dictionary.add_symbol("<mask>") | |
| def setup_task(cls, args, **kwargs): | |
| paths = utils.split_paths(args.data) | |
| assert len(paths) > 0 | |
| dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) | |
| logger.info("dictionary: {} types".format(len(dictionary))) | |
| return cls(args, dictionary) | |
| def _get_whole_word_mask(self): | |
| # create masked input and targets | |
| if self.args.mask_whole_words: | |
| bpe = encoders.build_bpe(self.args) | |
| if bpe is not None: | |
| def is_beginning_of_word(i): | |
| if i < self.source_dictionary.nspecial: | |
| # special elements are always considered beginnings | |
| return True | |
| tok = self.source_dictionary[i] | |
| if tok.startswith("madeupword"): | |
| return True | |
| try: | |
| return bpe.is_beginning_of_word(tok) | |
| except ValueError: | |
| return True | |
| mask_whole_words = torch.ByteTensor( | |
| list(map(is_beginning_of_word, range(len(self.source_dictionary)))) | |
| ) | |
| else: | |
| mask_whole_words = None | |
| return mask_whole_words | |
| def _get_sample_prob(self, dataset_lens): | |
| """ | |
| Get smoothed sampling porbability by languages. This helps low resource | |
| languages by upsampling them. | |
| """ | |
| prob = dataset_lens / dataset_lens.sum() | |
| smoothed_prob = prob**self.args.multilang_sampling_alpha | |
| smoothed_prob = smoothed_prob / smoothed_prob.sum() | |
| return smoothed_prob | |
| def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
| """Load a given dataset split. | |
| Args: | |
| split (str): name of the split (e.g., train, valid, test) | |
| """ | |
| paths = utils.split_paths(self.args.data) | |
| assert len(paths) > 0 | |
| data_path = paths[(epoch - 1) % len(paths)] | |
| languages = sorted( | |
| name | |
| for name in os.listdir(data_path) | |
| if os.path.isdir(os.path.join(data_path, name)) | |
| ) | |
| logger.info("Training on {0} languages: {1}".format(len(languages), languages)) | |
| logger.info( | |
| "Language to id mapping: ", {lang: id for id, lang in enumerate(languages)} | |
| ) | |
| mask_whole_words = self._get_whole_word_mask() | |
| lang_datasets = [] | |
| for lang_id, language in enumerate(languages): | |
| split_path = os.path.join(data_path, language, split) | |
| dataset = data_utils.load_indexed_dataset( | |
| split_path, | |
| self.source_dictionary, | |
| self.args.dataset_impl, | |
| combine=combine, | |
| ) | |
| if dataset is None: | |
| raise FileNotFoundError( | |
| "Dataset not found: {} ({})".format(split, split_path) | |
| ) | |
| # create continuous blocks of tokens | |
| dataset = TokenBlockDataset( | |
| dataset, | |
| dataset.sizes, | |
| self.args.tokens_per_sample - 1, # one less for <s> | |
| pad=self.source_dictionary.pad(), | |
| eos=self.source_dictionary.eos(), | |
| break_mode=self.args.sample_break_mode, | |
| ) | |
| logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) | |
| # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) | |
| dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) | |
| src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( | |
| dataset, | |
| self.source_dictionary, | |
| pad_idx=self.source_dictionary.pad(), | |
| mask_idx=self.mask_idx, | |
| seed=self.args.seed, | |
| mask_prob=self.args.mask_prob, | |
| leave_unmasked_prob=self.args.leave_unmasked_prob, | |
| random_token_prob=self.args.random_token_prob, | |
| freq_weighted_replacement=self.args.freq_weighted_replacement, | |
| mask_whole_words=mask_whole_words, | |
| ) | |
| lang_dataset = NestedDictionaryDataset( | |
| { | |
| "net_input": { | |
| "src_tokens": PadDataset( | |
| src_dataset, | |
| pad_idx=self.source_dictionary.pad(), | |
| left_pad=False, | |
| ), | |
| "src_lengths": NumelDataset(src_dataset, reduce=False), | |
| }, | |
| "target": PadDataset( | |
| tgt_dataset, | |
| pad_idx=self.source_dictionary.pad(), | |
| left_pad=False, | |
| ), | |
| "nsentences": NumSamplesDataset(), | |
| "ntokens": NumelDataset(src_dataset, reduce=True), | |
| "lang_id": RawLabelDataset([lang_id] * src_dataset.sizes.shape[0]), | |
| }, | |
| sizes=[src_dataset.sizes], | |
| ) | |
| lang_datasets.append(lang_dataset) | |
| dataset_lengths = np.array( | |
| [len(d) for d in lang_datasets], | |
| dtype=float, | |
| ) | |
| logger.info( | |
| "loaded total {} blocks for all languages".format( | |
| dataset_lengths.sum(), | |
| ) | |
| ) | |
| if split == self.args.train_subset: | |
| # For train subset, additionally up or down sample languages. | |
| sample_probs = self._get_sample_prob(dataset_lengths) | |
| logger.info( | |
| "Sample probability by language: ", | |
| { | |
| lang: "{0:.4f}".format(sample_probs[id]) | |
| for id, lang in enumerate(languages) | |
| }, | |
| ) | |
| size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths | |
| logger.info( | |
| "Up/Down Sampling ratio by language: ", | |
| { | |
| lang: "{0:.2f}".format(size_ratio[id]) | |
| for id, lang in enumerate(languages) | |
| }, | |
| ) | |
| resampled_lang_datasets = [ | |
| ResamplingDataset( | |
| lang_datasets[i], | |
| size_ratio=size_ratio[i], | |
| seed=self.args.seed, | |
| epoch=epoch, | |
| replace=size_ratio[i] >= 1.0, | |
| ) | |
| for i, d in enumerate(lang_datasets) | |
| ] | |
| dataset = ConcatDataset(resampled_lang_datasets) | |
| else: | |
| dataset = ConcatDataset(lang_datasets) | |
| lang_splits = [split] | |
| for lang_id, lang_dataset in enumerate(lang_datasets): | |
| split_name = split + "_" + languages[lang_id] | |
| lang_splits.append(split_name) | |
| self.datasets[split_name] = lang_dataset | |
| # [TODO]: This is hacky for now to print validation ppl for each | |
| # language individually. Maybe need task API changes to allow it | |
| # in more generic ways. | |
| if split in self.args.valid_subset: | |
| self.args.valid_subset = self.args.valid_subset.replace( | |
| split, ",".join(lang_splits) | |
| ) | |
| with data_utils.numpy_seed(self.args.seed + epoch): | |
| shuffle = np.random.permutation(len(dataset)) | |
| self.datasets[split] = SortDataset( | |
| dataset, | |
| sort_order=[ | |
| shuffle, | |
| dataset.sizes, | |
| ], | |
| ) | |
| def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): | |
| src_dataset = PadDataset( | |
| TokenBlockDataset( | |
| src_tokens, | |
| src_lengths, | |
| self.args.tokens_per_sample - 1, # one less for <s> | |
| pad=self.source_dictionary.pad(), | |
| eos=self.source_dictionary.eos(), | |
| break_mode="eos", | |
| ), | |
| pad_idx=self.source_dictionary.pad(), | |
| left_pad=False, | |
| ) | |
| src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) | |
| src_dataset = NestedDictionaryDataset( | |
| { | |
| "id": IdDataset(), | |
| "net_input": { | |
| "src_tokens": src_dataset, | |
| "src_lengths": NumelDataset(src_dataset, reduce=False), | |
| }, | |
| }, | |
| sizes=src_lengths, | |
| ) | |
| if sort: | |
| src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) | |
| return src_dataset | |
| def source_dictionary(self): | |
| return self.dictionary | |
| def target_dictionary(self): | |
| return self.dictionary | |