Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| import os | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import numpy as np | |
| import torch | |
| from omegaconf import II | |
| from fairseq import utils | |
| from fairseq.data import ( | |
| AppendTokenDataset, | |
| ConcatDataset, | |
| Dictionary, | |
| IdDataset, | |
| LMContextWindowDataset, | |
| MonolingualDataset, | |
| NestedDictionaryDataset, | |
| NumelDataset, | |
| PadDataset, | |
| PrependTokenDataset, | |
| ResamplingDataset, | |
| SortDataset, | |
| StripTokenDataset, | |
| TokenBlockDataset, | |
| TruncatedDictionary, | |
| data_utils, | |
| ) | |
| from fairseq.data.indexed_dataset import get_available_dataset_impl | |
| from fairseq.data.shorten_dataset import maybe_shorten_dataset | |
| from fairseq.dataclass import ChoiceEnum, FairseqDataclass | |
| from fairseq.tasks import LegacyFairseqTask, register_task | |
| SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) | |
| SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) | |
| logger = logging.getLogger(__name__) | |
| def lang_token(lang): | |
| return f"<{lang}>" | |
| class MultilingualLanguageModelingConfig(FairseqDataclass): | |
| # TODO common var add to parent | |
| data: Optional[str] = field( | |
| default=None, metadata={"help": "path to data directory"} | |
| ) | |
| sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( | |
| default="none", | |
| metadata={ | |
| "help": 'If omitted or "none", fills each sample with tokens-per-sample ' | |
| 'tokens. If set to "complete", splits samples only at the end ' | |
| "of sentence, but may include multiple sentences per sample. " | |
| '"complete_doc" is similar but respects doc boundaries. ' | |
| 'If set to "eos", includes only one sentence per sample.' | |
| }, | |
| ) | |
| tokens_per_sample: int = field( | |
| default=1024, | |
| metadata={"help": "max number of tokens per sample for LM dataset"}, | |
| ) | |
| output_dictionary_size: int = field( | |
| default=-1, metadata={"help": "limit the size of output dictionary"} | |
| ) | |
| self_target: bool = field(default=False, metadata={"help": "include self target"}) | |
| future_target: bool = field( | |
| default=False, metadata={"help": "include future target"} | |
| ) | |
| past_target: bool = field(default=False, metadata={"help": "include past target"}) | |
| add_bos_token: bool = field( | |
| default=False, metadata={"help": "prepend lang id token <dialect>"} | |
| ) | |
| max_source_positions: Optional[int] = field( | |
| default=None, metadata={"help": "max number of tokens in the source sequence"} | |
| ) | |
| max_target_positions: Optional[int] = field( | |
| default=None, metadata={"help": "max number of tokens in the target sequence"} | |
| ) | |
| pad_to_fixed_length: Optional[bool] = field( | |
| default=False, metadata={"help": "pad to fixed length"} | |
| ) | |
| pad_to_fixed_bsz: Optional[bool] = field( | |
| default=False, metadata={"help": "boolean to pad to fixed batch size"} | |
| ) | |
| multilang_sampling_alpha: Optional[float] = field( | |
| default=1.0, | |
| metadata={ | |
| "help": "smoothing alpha for sample rations across multiple datasets" | |
| }, | |
| ) | |
| shorten_method: SHORTEN_METHOD_CHOICES = field( | |
| default="none", | |
| metadata={ | |
| "help": "if not none, shorten sequences that exceed --tokens-per-sample" | |
| }, | |
| ) | |
| shorten_data_split_list: str = field( | |
| default="", | |
| metadata={ | |
| "help": "comma-separated list of dataset splits to apply shortening to, " | |
| 'e.g., "train,valid" (default: all dataset splits)' | |
| }, | |
| ) | |
| langs: str = field( | |
| default="", | |
| metadata={ | |
| "help": "comma-separated list of languages (default: all directories in data path)" | |
| }, | |
| ) | |
| baseline_model_langs: str = field( | |
| default="", | |
| metadata={ | |
| "help": "comma-separated list of languages in the baseline model (default: none)" | |
| }, | |
| ) | |
| # TODO: legacy parameter kept for compatibility | |
| baseline_model: str = field( | |
| default="", | |
| metadata={"help": "path to the baseline model (default: none)"}, | |
| ) | |
| lang_to_offline_shard_ratio: str = field( | |
| default="", | |
| metadata={ | |
| "help": "absolute path of tsv file location to indicate lang to offline shard ratio.", | |
| }, | |
| ) | |
| # TODO common vars below add to parent | |
| seed: int = II("common.seed") | |
| dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( | |
| "dataset.dataset_impl" | |
| ) | |
| data_buffer_size: int = II("dataset.data_buffer_size") | |
| tpu: bool = II("common.tpu") | |
| batch_size: Optional[int] = II("dataset.batch_size") | |
| batch_size_valid: Optional[int] = II("dataset.batch_size_valid") | |
| train_subset: str = II("common.train_subset") | |
| valid_subset: str = II("common.valid_subset") | |
| class MultilingualLanguageModelingTask(LegacyFairseqTask): | |
| """ | |
| Train a language model. | |
| Args: | |
| dictionary (~fairseq.data.Dictionary): the dictionary for the input of | |
| the language model | |
| output_dictionary (~fairseq.data.Dictionary): the dictionary for the | |
| output of the language model. In most cases it will be the same as | |
| *dictionary*, but could possibly be a more limited version of the | |
| dictionary (if ``--output-dictionary-size`` is used). | |
| targets (List[str]): list of the target types that the language model | |
| should predict. Can be one of "self", "future", and "past". | |
| Defaults to "future". | |
| .. note:: | |
| The language modeling task is compatible with :mod:`fairseq-train`, | |
| :mod:`fairseq-generate`, :mod:`fairseq-interactive` and | |
| :mod:`fairseq-eval-lm`. | |
| The language modeling task provides the following additional command-line | |
| arguments: | |
| .. argparse:: | |
| :ref: fairseq.tasks.language_modeling_parser | |
| :prog: | |
| """ | |
| def __init__(self, args, dictionary, output_dictionary=None, targets=None): | |
| super().__init__(args) | |
| self.dictionary = dictionary | |
| self.output_dictionary = output_dictionary or dictionary | |
| if targets is None: | |
| targets = ["future"] | |
| self.targets = targets | |
| def _get_langs(args, epoch=1): | |
| paths = utils.split_paths(args.data) | |
| assert len(paths) > 0 | |
| data_path = paths[(epoch - 1) % len(paths)] | |
| languages = sorted( | |
| name | |
| for name in os.listdir(data_path) | |
| if os.path.isdir(os.path.join(data_path, name)) | |
| ) | |
| if args.langs: | |
| keep_langs = set(args.langs.split(",")) | |
| languages = [lang for lang in languages if lang in keep_langs] | |
| assert len(languages) == len(keep_langs) | |
| return languages, data_path | |
| def setup_dictionary(cls, args, **kwargs): | |
| dictionary = None | |
| output_dictionary = None | |
| if args.data: | |
| paths = utils.split_paths(args.data) | |
| assert len(paths) > 0 | |
| dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) | |
| if args.add_bos_token: | |
| languages, _ = cls._get_langs(args) | |
| logger.info("----------------") | |
| for lang in languages: | |
| dictionary.add_symbol(lang_token(lang)) | |
| logger.info(f"add language token: {lang_token(lang)}") | |
| logger.info("----------------") | |
| logger.info("dictionary: {} types".format(len(dictionary))) | |
| output_dictionary = dictionary | |
| if args.output_dictionary_size >= 0: | |
| output_dictionary = TruncatedDictionary( | |
| dictionary, args.output_dictionary_size | |
| ) | |
| return (dictionary, output_dictionary) | |
| def setup_task(cls, args, **kwargs): | |
| """Setup the task (e.g., load dictionaries). | |
| Args: | |
| args (argparse.Namespace): parsed command-line arguments | |
| """ | |
| dictionary, output_dictionary = cls.setup_dictionary(args, **kwargs) | |
| # upgrade old checkpoints | |
| if hasattr(args, "exclude_self_target"): | |
| args.self_target = not args.exclude_self_target | |
| targets = [] | |
| if getattr(args, "self_target", False): | |
| targets.append("self") | |
| if getattr(args, "future_target", False): | |
| targets.append("future") | |
| if getattr(args, "past_target", False): | |
| targets.append("past") | |
| if len(targets) == 0: | |
| # standard language modeling | |
| targets = ["future"] | |
| return cls(args, dictionary, output_dictionary, targets=targets) | |
| def build_model(self, args, from_checkpoint=False): | |
| model = super().build_model(args, from_checkpoint) | |
| for target in self.targets: | |
| if target not in model.supported_targets: | |
| raise ValueError( | |
| f"Unsupported language modeling target: {target} not in {model.supported_targets}" | |
| ) | |
| return model | |
| def _get_sample_prob(self, dataset_lens): | |
| """ | |
| Get smoothed sampling porbability by languages. This helps low resource | |
| languages by upsampling them. | |
| """ | |
| prob = dataset_lens / dataset_lens.sum() | |
| smoothed_prob = prob**self.args.multilang_sampling_alpha | |
| smoothed_prob = smoothed_prob / smoothed_prob.sum() | |
| return smoothed_prob | |
| def load_dataset(self, split: str, epoch=1, combine=False, **kwargs): | |
| """Load a given dataset split. | |
| Args: | |
| split (str): name of the split (e.g., train, valid, test) | |
| """ | |
| languages, data_path = MultilingualLanguageModelingTask._get_langs( | |
| self.args, epoch | |
| ) | |
| lang_to_offline_shard_ratio = None | |
| if self.args.lang_to_offline_shard_ratio != "": | |
| lang_to_offline_shard_ratio = {} | |
| assert os.path.exists( | |
| self.args.lang_to_offline_shard_ratio | |
| ), "provided offline shard ratio file doesn't exist: {0}".format( | |
| self.args.lang_to_offline_shard_ratio | |
| ) | |
| with open(self.args.lang_to_offline_shard_ratio) as fin: | |
| for line in fin: | |
| lang, ratio = line.strip().split("\t") | |
| ratio = float(ratio) | |
| lang_to_offline_shard_ratio[lang] = ratio | |
| logger.info( | |
| "Found offline sharded ratio: %s", | |
| lang_to_offline_shard_ratio, | |
| ) | |
| if split == self.args.train_subset: | |
| logger.info( | |
| "Training on {0} languages: {1}".format(len(languages), languages) | |
| ) | |
| else: | |
| logger.info( | |
| "Evaluating on {0} languages: {1}".format(len(languages), languages) | |
| ) | |
| tokens_per_sample = self.args.tokens_per_sample - int(self.args.add_bos_token) | |
| fixed_pad_length = None | |
| if self.args.pad_to_fixed_length: | |
| fixed_pad_length = self.args.tokens_per_sample | |
| pad_to_bsz = None | |
| if self.args.pad_to_fixed_bsz: | |
| pad_to_bsz = ( | |
| self.args.batch_size_valid if "valid" in split else self.args.batch_size | |
| ) | |
| lang_datasets = [] | |
| for lang_id, language in enumerate(languages): | |
| split_path = os.path.join(data_path, language, split) | |
| dataset = data_utils.load_indexed_dataset( | |
| split_path, self.dictionary, self.args.dataset_impl, combine=combine | |
| ) | |
| # print('len(dataset) =', len(dataset)) | |
| if dataset is None: | |
| raise FileNotFoundError( | |
| "Dataset not found: {} ({})".format(split, split_path) | |
| ) | |
| dataset = maybe_shorten_dataset( | |
| dataset, | |
| split, | |
| self.args.shorten_data_split_list, | |
| self.args.shorten_method, | |
| tokens_per_sample, | |
| self.args.seed, | |
| ) | |
| dataset = TokenBlockDataset( | |
| dataset, | |
| dataset.sizes, | |
| tokens_per_sample, | |
| pad=self.dictionary.pad(), | |
| eos=self.dictionary.eos(), | |
| break_mode=self.args.sample_break_mode, | |
| include_targets=True, | |
| ) | |
| add_eos_for_other_targets = ( | |
| self.args.sample_break_mode is not None | |
| and self.args.sample_break_mode != "none" | |
| ) | |
| src_lang_idx, tgt_lang_idx = None, None | |
| if self.args.add_bos_token: | |
| src_lang_idx = self.dictionary.index(lang_token(language)) | |
| tgt_lang_idx = self.output_dictionary.index(lang_token(language)) | |
| lang_datasets.append( | |
| MonolingualDataset( | |
| dataset=dataset, | |
| sizes=dataset.sizes, | |
| src_vocab=self.dictionary, | |
| tgt_vocab=self.output_dictionary, | |
| add_eos_for_other_targets=add_eos_for_other_targets, | |
| shuffle=True, | |
| targets=self.targets, | |
| fixed_pad_length=fixed_pad_length, | |
| pad_to_bsz=pad_to_bsz, | |
| add_bos_token=self.args.add_bos_token, | |
| src_lang_idx=src_lang_idx, | |
| tgt_lang_idx=tgt_lang_idx, | |
| ) | |
| ) | |
| dataset_lengths = np.array( | |
| [len(d) for d in lang_datasets], | |
| dtype=float, | |
| ) | |
| logger.info( | |
| "loaded total {} blocks for all languages".format( | |
| dataset_lengths.sum(), | |
| ) | |
| ) | |
| if split == self.args.train_subset: | |
| dataset_lengths_ratio_multiplier = np.ones(len(dataset_lengths)) | |
| if lang_to_offline_shard_ratio is not None: | |
| dataset_lengths_ratio_multiplier = [] | |
| for lang in languages: | |
| assert ( | |
| lang in lang_to_offline_shard_ratio | |
| ), "Lang: {0} missing in offline shard ratio file: {1}".format( | |
| lang, | |
| self.args.lang_to_offline_shard_ratio, | |
| ) | |
| dataset_lengths_ratio_multiplier.append( | |
| lang_to_offline_shard_ratio[lang] | |
| ) | |
| dataset_lengths_ratio_multiplier = np.array( | |
| dataset_lengths_ratio_multiplier | |
| ) | |
| true_dataset_lengths = ( | |
| dataset_lengths * dataset_lengths_ratio_multiplier | |
| ) | |
| else: | |
| true_dataset_lengths = dataset_lengths | |
| # For train subset, additionally up or down sample languages. | |
| sample_probs = self._get_sample_prob(true_dataset_lengths) | |
| logger.info( | |
| "Sample probability by language: %s", | |
| { | |
| lang: "{0:.4f}".format(sample_probs[id]) | |
| for id, lang in enumerate(languages) | |
| }, | |
| ) | |
| size_ratio = (sample_probs * true_dataset_lengths.sum()) / dataset_lengths | |
| # TODO: add an option for shrinking all size ratios to below 1 | |
| # if self.args.multilang_sampling_alpha != 1: | |
| # size_ratio /= size_ratio.max() | |
| # Fix numeric errors in size ratio computation | |
| # 0.999999999999999999 -> 1 | |
| # 1.000000000000000002 -> 1 | |
| for i in range(len(size_ratio)): | |
| size_ratio[i] = round(size_ratio[i], 8) | |
| logger.info( | |
| "Up/Down Sampling ratio by language: %s", | |
| { | |
| lang: "{0:.2f}".format(size_ratio[id]) | |
| for id, lang in enumerate(languages) | |
| }, | |
| ) | |
| logger.info( | |
| "Actual dataset size by language: %s", | |
| { | |
| lang: "{0:.2f}".format(len(lang_datasets[id])) | |
| for id, lang in enumerate(languages) | |
| }, | |
| ) | |
| resampled_lang_datasets = [ | |
| ResamplingDataset( | |
| lang_datasets[i], | |
| size_ratio=size_ratio[i], | |
| seed=self.args.seed, | |
| epoch=epoch, | |
| replace=size_ratio[i] > 1.0, | |
| ) | |
| for i, d in enumerate(lang_datasets) | |
| ] | |
| logger.info( | |
| "Resampled dataset size by language: %s", | |
| { | |
| lang: "{0:.2f}".format(len(resampled_lang_datasets[id])) | |
| for id, lang in enumerate(languages) | |
| }, | |
| ) | |
| dataset = ConcatDataset(resampled_lang_datasets) | |
| else: | |
| dataset = ConcatDataset(lang_datasets) | |
| lang_splits = [split] | |
| for lang_id, lang_dataset in enumerate(lang_datasets): | |
| split_name = split + "_" + languages[lang_id] | |
| lang_splits.append(split_name) | |
| self.datasets[split_name] = lang_dataset | |
| # [TODO]: This is hacky for now to print validation ppl for each | |
| # language individually. Maybe need task API changes to allow it | |
| # in more generic ways. | |
| if split in self.args.valid_subset: | |
| self.args.valid_subset = self.args.valid_subset.replace( | |
| split, ",".join(lang_splits) | |
| ) | |
| with data_utils.numpy_seed(self.args.seed + epoch): | |
| shuffle = np.random.permutation(len(dataset)) | |
| self.datasets[split] = SortDataset( | |
| dataset, | |
| sort_order=[ | |
| shuffle, | |
| dataset.sizes, | |
| ], | |
| ) | |
| def build_dataset_for_inference( | |
| self, src_tokens, src_lengths, language="en_XX", **kwargs | |
| ): | |
| """ | |
| Generate batches for inference. We prepend an eos token to src_tokens | |
| (or bos if `--add-bos-token` is set) and we append a <pad> to target. | |
| This is convenient both for generation with a prefix and LM scoring. | |
| """ | |
| dataset = StripTokenDataset( | |
| TokenBlockDataset( | |
| src_tokens, | |
| src_lengths, | |
| block_size=None, # ignored for "eos" break mode | |
| pad=self.source_dictionary.pad(), | |
| eos=self.source_dictionary.eos(), | |
| break_mode="eos", | |
| ), | |
| # remove eos from (end of) target sequence | |
| self.source_dictionary.eos(), | |
| ) | |
| src_lang_idx = self.dictionary.index(lang_token(language)) | |
| src_dataset = PrependTokenDataset( | |
| dataset, | |
| token=( | |
| (src_lang_idx or self.source_dictionary.bos()) | |
| if getattr(self.args, "add_bos_token", False) | |
| else self.source_dictionary.eos() | |
| ), | |
| ) | |
| max_seq_len = max(src_lengths) + 1 | |
| tgt_dataset = AppendTokenDataset(dataset, token=self.source_dictionary.pad()) | |
| return NestedDictionaryDataset( | |
| { | |
| "id": IdDataset(), | |
| "net_input": { | |
| "src_tokens": PadDataset( | |
| src_dataset, | |
| pad_idx=self.source_dictionary.pad(), | |
| left_pad=False, | |
| pad_length=max_seq_len, | |
| ), | |
| "src_lengths": NumelDataset(src_dataset, reduce=False), | |
| }, | |
| "target": PadDataset( | |
| tgt_dataset, | |
| pad_idx=self.source_dictionary.pad(), | |
| left_pad=False, | |
| pad_length=max_seq_len, | |
| ), | |
| }, | |
| sizes=[np.array(src_lengths)], | |
| ) | |
| def inference_step( | |
| self, | |
| generator, | |
| models, | |
| sample, | |
| language="en_XX", | |
| prefix_tokens=None, | |
| constraints=None, | |
| ): | |
| # Generation will always be conditioned on bos_token | |
| if getattr(self.args, "add_bos_token", False): | |
| src_lang_idx = self.dictionary.index(lang_token(language)) | |
| bos_token = src_lang_idx or self.source_dictionary.bos() | |
| else: | |
| bos_token = self.source_dictionary.eos() | |
| if constraints is not None: | |
| raise NotImplementedError( | |
| "Constrained decoding with the language_modeling task is not supported" | |
| ) | |
| # SequenceGenerator doesn't use src_tokens directly, we need to | |
| # pass the `prefix_tokens` argument instead | |
| if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): | |
| prefix_tokens = sample["net_input"]["src_tokens"] | |
| if prefix_tokens[:, 0].eq(bos_token).all(): | |
| prefix_tokens = prefix_tokens[:, 1:] | |
| return generator.generate( | |
| models, sample, prefix_tokens=prefix_tokens, bos_token=bos_token | |
| ) | |
| def eval_lm_dataloader( | |
| self, | |
| dataset, | |
| max_tokens: Optional[int] = 36000, | |
| batch_size: Optional[int] = None, | |
| max_positions: Optional[int] = None, | |
| num_shards: int = 1, | |
| shard_id: int = 0, | |
| num_workers: int = 1, | |
| data_buffer_size: int = 10, | |
| # ensures that every evaluated token has access to a context of at least | |
| # this size, if possible | |
| context_window: int = 0, | |
| ): | |
| if context_window > 0: | |
| dataset = LMContextWindowDataset( | |
| dataset=dataset, | |
| tokens_per_sample=self.args.tokens_per_sample, | |
| context_window=context_window, | |
| pad_idx=self.source_dictionary.pad(), | |
| ) | |
| return self.get_batch_iterator( | |
| dataset=dataset, | |
| max_tokens=max_tokens, | |
| max_sentences=batch_size, | |
| max_positions=max_positions, | |
| ignore_invalid_inputs=True, | |
| num_shards=num_shards, | |
| shard_id=shard_id, | |
| num_workers=num_workers, | |
| data_buffer_size=data_buffer_size, | |
| ) | |
| def source_dictionary(self): | |
| """Return the :class:`~fairseq.data.Dictionary` for the language | |
| model.""" | |
| return self.dictionary | |
| def target_dictionary(self): | |
| """Return the :class:`~fairseq.data.Dictionary` for the language | |
| model.""" | |
| return self.output_dictionary | |