Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| import os | |
| from dataclasses import dataclass, field | |
| from typing import Any, Optional | |
| import numpy as np | |
| from omegaconf import II, MISSING | |
| from fairseq import utils | |
| from fairseq.data import ( | |
| AppendTokenDataset, | |
| DenoisingDataset, | |
| Dictionary, | |
| IdDataset, | |
| NestedDictionaryDataset, | |
| NumelDataset, | |
| PadDataset, | |
| PrependTokenDataset, | |
| StripTokenDataset, | |
| TokenBlockDataset, | |
| data_utils, | |
| ) | |
| from fairseq.data.encoders.utils import get_whole_word_mask | |
| from fairseq.data.shorten_dataset import maybe_shorten_dataset | |
| from fairseq.dataclass import ChoiceEnum, FairseqDataclass | |
| from fairseq.tasks import FairseqTask, register_task | |
| from ..data.indexed_dataset import get_available_dataset_impl | |
| logger = logging.getLogger(__name__) | |
| SAMPLE_BREAK_MODE_CHOICES = ChoiceEnum(["none", "complete", "complete_doc", "eos"]) | |
| SHORTEN_METHOD_CHOICES = ChoiceEnum(["none", "truncate", "random_crop"]) | |
| MASK_LENGTH_CHOICES = ChoiceEnum(["subword", "word", "span-poisson"]) | |
| class DenoisingConfig(FairseqDataclass): | |
| data: str = field( | |
| default=MISSING, | |
| metadata={"help": "path to data directory"}, | |
| ) | |
| bpe: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "TODO"}, | |
| ) | |
| tokens_per_sample: int = field( | |
| default=512, | |
| metadata={ | |
| "help": "max number of total tokens over all segments " | |
| "per sample for dataset" | |
| }, | |
| ) | |
| sample_break_mode: SAMPLE_BREAK_MODE_CHOICES = field( | |
| default="complete_doc", | |
| metadata={ | |
| "help": 'If omitted or "none", fills each sample with tokens-per-sample ' | |
| 'tokens. If set to "complete", splits samples only at the end ' | |
| "of sentence, but may include multiple sentences per sample. " | |
| '"complete_doc" is similar but respects doc boundaries. ' | |
| 'If set to "eos", includes only one sentence per sample.' | |
| }, | |
| ) | |
| replace_length: int = field( | |
| default=0, | |
| metadata={"help": "TODO, should only allow -1, 0 and 1"}, | |
| ) | |
| mask: float = field( | |
| default=0.0, | |
| metadata={"help": "fraction of words/subwords that will be masked"}, | |
| ) | |
| mask_random: float = field( | |
| default=0.0, | |
| metadata={"help": "instead of using [MASK], use random token this often"}, | |
| ) | |
| insert: float = field( | |
| default=0.0, | |
| metadata={"help": "insert this percentage of additional random tokens"}, | |
| ) | |
| permute: float = field( | |
| default=0.0, | |
| metadata={"help": "take this proportion of subwords and permute them"}, | |
| ) | |
| rotate: float = field( | |
| default=0.5, | |
| metadata={"help": "rotate this proportion of inputs"}, | |
| ) | |
| poisson_lambda: float = field( | |
| default=3.0, | |
| metadata={"help": "randomly shuffle sentences for this proportion of inputs"}, | |
| ) | |
| shuffle_instance: float = field( | |
| default=0.0, | |
| metadata={"help": "shuffle this proportion of sentences in all inputs"}, | |
| ) | |
| mask_length: MASK_LENGTH_CHOICES = field( | |
| default="subword", | |
| metadata={"help": "mask length to choose"}, | |
| ) | |
| permute_sentences: int = field( | |
| default=-1, | |
| metadata={ | |
| "help": "when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)" | |
| }, | |
| ) | |
| seed: int = II("common.seed") | |
| shorten_method: SHORTEN_METHOD_CHOICES = field( | |
| default="none", | |
| metadata={ | |
| "help": "if not none, shorten sequences that exceed --tokens-per-sample" | |
| }, | |
| ) | |
| shorten_data_split_list: str = field( | |
| default="", | |
| metadata={ | |
| "help": "comma-separated list of dataset splits to apply shortening to, " | |
| 'e.g., "train,valid" (default: all dataset splits)' | |
| }, | |
| ) | |
| max_source_positions: int = field( | |
| default=1024, | |
| metadata={"help": "max number of tokens in the source sequence"}, | |
| ) | |
| max_target_positions: int = field( | |
| default=1024, | |
| metadata={"help": "max number of tokens in the target sequence"}, | |
| ) | |
| dataset_impl: Optional[ChoiceEnum(get_available_dataset_impl())] = II( | |
| "dataset.dataset_impl" | |
| ) | |
| class DenoisingTask(FairseqTask): | |
| """ | |
| Denoising task for applying sequence to sequence denoising. (ie. BART) | |
| """ | |
| cfg: DenoisingConfig | |
| def __init__(self, cfg, dictionary): | |
| super().__init__(cfg) | |
| self.dictionary = dictionary | |
| # add mask token | |
| self.mask_idx = self.dictionary.add_symbol("<mask>") | |
| def setup_task(cls, cfg: DenoisingConfig, **kwargs): | |
| """Setup the task.""" | |
| paths = utils.split_paths(cfg.data) | |
| assert len(paths) > 0 | |
| dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) | |
| logger.info("dictionary: {} types".format(len(dictionary))) | |
| if not hasattr(cfg, "shuffle_instance"): | |
| cfg.shuffle_instance = False | |
| return cls(cfg, dictionary) | |
| def _load_dataset_split(self, split, epoch, combine): | |
| paths = utils.split_paths(self.cfg.data) | |
| assert len(paths) > 0 | |
| data_path = paths[(epoch - 1) % len(paths)] | |
| split_path = os.path.join(data_path, split) | |
| dataset = data_utils.load_indexed_dataset( | |
| split_path, | |
| self.dictionary, | |
| self.cfg.dataset_impl, | |
| combine=combine, | |
| ) | |
| if dataset is None: | |
| raise FileNotFoundError( | |
| "Dataset not found: {} ({})".format(split, split_path) | |
| ) | |
| dataset = StripTokenDataset(dataset, self.dictionary.eos()) | |
| dataset = maybe_shorten_dataset( | |
| dataset, | |
| split, | |
| self.cfg.shorten_data_split_list, | |
| self.cfg.shorten_method, | |
| self.cfg.tokens_per_sample, | |
| self.cfg.seed, | |
| ) | |
| # create continuous blocks of tokens | |
| dataset = TokenBlockDataset( | |
| dataset, | |
| dataset.sizes, | |
| self.cfg.tokens_per_sample - 2, | |
| # one less for <s> and one for </s> | |
| pad=self.dictionary.pad(), | |
| eos=self.dictionary.eos(), | |
| break_mode=self.cfg.sample_break_mode, | |
| document_sep_len=0, | |
| ) | |
| logger.info("loaded {} blocks from: {}".format(len(dataset), split_path)) | |
| # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) | |
| dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) | |
| dataset = AppendTokenDataset(dataset, self.source_dictionary.eos()) | |
| return dataset | |
| def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
| """Load a given dataset split. | |
| Args: | |
| split (str): name of the split (e.g., train, valid, test) | |
| """ | |
| dataset = self._load_dataset_split(split, epoch, combine) | |
| mask_whole_words = ( | |
| get_whole_word_mask(self.cfg.bpe, self.source_dictionary) | |
| if self.cfg.mask_length != "subword" | |
| else None | |
| ) | |
| self.datasets[split] = DenoisingDataset( | |
| dataset, | |
| dataset.sizes, | |
| self.dictionary, | |
| self.mask_idx, | |
| mask_whole_words, | |
| shuffle=self.cfg.shuffle_instance, | |
| seed=self.cfg.seed, | |
| mask=self.cfg.mask, | |
| mask_random=self.cfg.mask_random, | |
| insert=self.cfg.insert, | |
| rotate=self.cfg.rotate, | |
| permute_sentences=self.cfg.permute_sentences, | |
| bpe=self.cfg.bpe, | |
| replace_length=self.cfg.replace_length, | |
| mask_length=self.cfg.mask_length, | |
| poisson_lambda=self.cfg.poisson_lambda, | |
| ) | |
| logger.info( | |
| "Split: {0}, Loaded {1} samples of denoising_dataset".format( | |
| split, | |
| len(self.datasets[split]), | |
| ) | |
| ) | |
| def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs): | |
| """ | |
| Generate batches for inference. We assume that the input begins with a | |
| bos symbol (`<s>`) and ends with an eos symbol (`</s>`). | |
| """ | |
| pad = self.source_dictionary.pad() | |
| eos = self.source_dictionary.eos() | |
| src_dataset = TokenBlockDataset( | |
| src_tokens, | |
| src_lengths, | |
| block_size=self.cfg.tokens_per_sample - 2, # for <s> and </s> | |
| pad=pad, | |
| eos=eos, | |
| break_mode=self.cfg.sample_break_mode, | |
| document_sep_len=0, | |
| ) | |
| prev_output_tokens = PrependTokenDataset( | |
| StripTokenDataset(src_dataset, eos), eos | |
| ) | |
| src_dataset = PadDataset(src_dataset, pad_idx=pad, left_pad=False) | |
| return NestedDictionaryDataset( | |
| { | |
| "id": IdDataset(), | |
| "net_input": { | |
| "src_tokens": src_dataset, | |
| "src_lengths": NumelDataset(src_dataset, reduce=False), | |
| "prev_output_tokens": PadDataset( | |
| prev_output_tokens, pad_idx=pad, left_pad=False | |
| ), | |
| }, | |
| "target": src_dataset, | |
| }, | |
| sizes=[np.array(src_lengths)], | |
| ) | |
| def max_positions(self): | |
| """Return the max sentence length allowed by the task.""" | |
| return (self.cfg.max_source_positions, self.cfg.max_target_positions) | |
| def source_dictionary(self): | |
| """Return the source :class:`~fairseq.data.Dictionary`.""" | |
| return self.dictionary | |
| def target_dictionary(self): | |
| """Return the target :class:`~fairseq.data.Dictionary`.""" | |
| return self.dictionary | |