STAR / fairseq /tasks /audio_finetuning.py
Yixuan Li
add fairseq folder
85ba398
raw
history blame
16.5 kB
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import logging
import os
from fairseq.data.multi_corpus_dataset import MultiCorpusDataset
import torch
import json
from argparse import Namespace
from dataclasses import dataclass, field
from typing import Optional, Any, OrderedDict
from fairseq.data import AddTargetDataset, Dictionary, encoders
from fairseq.tasks.audio_pretraining import AudioPretrainingTask, AudioPretrainingConfig
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.configs import GenerationConfig
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel
from . import register_task
from .. import utils
from ..logging import metrics
logger = logging.getLogger(__name__)
class LabelEncoder(object):
def __init__(self, dictionary):
self.dictionary = dictionary
def __call__(self, label):
return self.dictionary.encode_line(
label, append_eos=False, add_if_not_exist=False
)
def label_len_fn(label):
return len(label.split(" "))
@dataclass
class AudioFinetuningConfig(AudioPretrainingConfig):
# Options for reporting WER metrics during validation. Only applicable to
# Seq2Seq models during fine-tuning
eval_wer: bool = field(
default=False, metadata={"help": "compute WER for Seq2Seq models"}
)
eval_wer_config: GenerationConfig = field(
default_factory=lambda: GenerationConfig(),
metadata={"help": "beam search config for evaluating wer during training"},
)
eval_wer_tokenizer: Any = field(
default=None,
metadata={"help": "tokenizer config for evaluating wer during training"},
)
eval_wer_post_process: str = field(
default="letter",
metadata={
"help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
},
)
eval_bleu: bool = field(
default=False, metadata={"help": "evaluation with BLEU scores"}
)
eval_bleu_detok: Optional[str] = field(
default=None,
metadata={
"help": "detokenize before computing BLEU (e.g., 'moses'); "
"required if using --eval-bleu; use 'space' to disable "
"detokenization; see fairseq.data.encoders for other options"
},
)
eval_bleu_detok_args: str = field(
default="{}", metadata={"help": "args for building the tokenizer, if needed"}
)
eval_tokenized_bleu: bool = field(
default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"}
)
eval_bleu_remove_bpe: Optional[str] = field(
default=None, metadata={"help": "remove BPE before computing BLEU"}
)
eval_bleu_args: str = field(
default="{}",
metadata={
"help": "generation args for BLUE scoring, e.g., "
'\'{"beam": 4, "lenpen": 0.6}\''
},
)
eval_bleu_print_samples: bool = field(
default=False, metadata={"help": "print sample generations during validation"}
)
autoregressive: bool = field(
default=False,
metadata={
"help": "required for autoregressive decoders (like seq2seq models); "
"adds 'prev_output_tokens' to input and appends eos to target"
},
)
rebuild_batches: bool = True
target_dictionary: Optional[str] = field(
default=None,
metadata={
"help": "override default dictionary location"
}
)
@register_task("audio_finetuning", dataclass=AudioFinetuningConfig)
class AudioFinetuningTask(AudioPretrainingTask):
""" """
cfg: AudioFinetuningConfig
def __init__(
self,
cfg: AudioFinetuningConfig,
):
super().__init__(cfg)
self.blank_symbol = "<s>"
self.state.add_factory("target_dictionary", self.load_target_dictionary)
def load_target_dictionary(self):
if self.cfg.labels:
target_dictionary = self.cfg.data
if self.cfg.target_dictionary: # override dict
target_dictionary = self.cfg.target_dictionary
dict_path = os.path.join(target_dictionary, f"dict.{self.cfg.labels}.txt")
logger.info('Using dict_path : {}'.format(dict_path))
return Dictionary.load(dict_path)
return None
def load_dataset(
self, split: str, task_cfg: AudioFinetuningConfig = None, **kwargs
):
super().load_dataset(split, task_cfg, **kwargs)
task_cfg = task_cfg or self.cfg
assert task_cfg.labels is not None
text_compression_level = getattr(
TextCompressionLevel, str(self.cfg.text_compression_level)
)
data_path = self.cfg.data
if task_cfg.multi_corpus_keys is None:
label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}")
skipped_indices = getattr(self.datasets[split], "skipped_indices", set())
text_compressor = TextCompressor(level=text_compression_level)
with open(label_path, "r") as f:
labels = [
text_compressor.compress(l)
for i, l in enumerate(f)
if i not in skipped_indices
]
assert len(labels) == len(self.datasets[split]), (
f"labels length ({len(labels)}) and dataset length "
f"({len(self.datasets[split])}) do not match"
)
process_label = LabelEncoder(self.target_dictionary)
self.datasets[split] = AddTargetDataset(
self.datasets[split],
labels,
pad=self.target_dictionary.pad(),
eos=self.target_dictionary.eos(),
batch_targets=True,
process_label=process_label,
label_len_fn=label_len_fn,
add_to_input=task_cfg.get("autoregressive", False),
text_compression_level=text_compression_level,
)
else:
target_dataset_map = OrderedDict()
multi_corpus_keys = [k.strip() for k in task_cfg.multi_corpus_keys.split(",")]
corpus_idx_map = {k: idx for idx, k in enumerate(multi_corpus_keys)}
data_keys = [k.split(":") for k in split.split(",")]
multi_corpus_sampling_weights = [float(val.strip()) for val in task_cfg.multi_corpus_sampling_weights.split(",")]
data_weights = []
for key, file_name in data_keys:
k = key.strip()
label_path = os.path.join(data_path, f"{file_name.strip()}.{task_cfg.labels}")
skipped_indices = getattr(self.dataset_map[split][k], "skipped_indices", set())
text_compressor = TextCompressor(level=text_compression_level)
with open(label_path, "r") as f:
labels = [
text_compressor.compress(l)
for i, l in enumerate(f)
if i not in skipped_indices
]
assert len(labels) == len(self.dataset_map[split][k]), (
f"labels length ({len(labels)}) and dataset length "
f"({len(self.dataset_map[split][k])}) do not match"
)
process_label = LabelEncoder(self.target_dictionary)
# TODO: Remove duplication of code from the if block above
target_dataset_map[k] = AddTargetDataset(
self.dataset_map[split][k],
labels,
pad=self.target_dictionary.pad(),
eos=self.target_dictionary.eos(),
batch_targets=True,
process_label=process_label,
label_len_fn=label_len_fn,
add_to_input=task_cfg.get("autoregressive", False),
text_compression_level=text_compression_level,
)
data_weights.append(multi_corpus_sampling_weights[corpus_idx_map[k]])
if len(target_dataset_map) == 1:
self.datasets[split] = list(target_dataset_map.values())[0]
else:
self.datasets[split] = MultiCorpusDataset(target_dataset_map, distribution=data_weights, seed=0, sort_indices=True)
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.state.target_dictionary
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if self.cfg.eval_wer and self.cfg.autoregressive:
metrics = self._inference_with_wer(self.sequence_generator, sample, model)
logging_output["_num_char_errors"] = metrics["num_char_errors"]
logging_output["_num_chars"] = metrics["num_chars"]
logging_output["_num_word_errors"] = metrics["num_word_errors"]
logging_output["_num_words"] = metrics["num_words"]
if self.cfg.eval_bleu and self.cfg.autoregressive:
metrics = self._inference_with_bleu(self.sequence_generator, sample, model)
logging_output["_bleu_sys_len"] = metrics.sys_len
logging_output["_bleu_ref_len"] = metrics.ref_len
# we split counts into separate entries so that they can be
# summed efficiently across workers using fast-stat-sync
assert len(metrics.counts) == 4
for i in range(4):
logging_output[f"_bleu_counts_{i}"] = metrics.counts[i]
logging_output[f"_bleu_totals_{i}"] = metrics.totals[i]
return loss, sample_size, logging_output
def build_model(self, model_cfg: FairseqDataclass, from_checkpoint=False):
model = super().build_model(model_cfg, from_checkpoint)
if self.cfg.eval_wer and self.cfg.autoregressive:
self.sequence_generator = self.build_generator(
[model],
self.cfg.eval_wer_config,
)
if self.cfg.eval_wer_tokenizer:
self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer)
else:
self.tokenizer = None
if self.cfg.eval_bleu and self.cfg.autoregressive:
assert self.cfg.eval_bleu_detok is not None, (
"--eval-bleu-detok is required if using --eval-bleu; "
"try --eval-bleu-detok=moses (or --eval-bleu-detok=space "
"to disable detokenization, e.g., when using sentencepiece)"
)
detok_args = json.loads(self.cfg.eval_bleu_detok_args)
self.tokenizer = encoders.build_tokenizer(
Namespace(tokenizer=self.cfg.eval_bleu_detok, **detok_args)
)
gen_args = json.loads(self.cfg.eval_bleu_args)
gen_args = Namespace(**gen_args)
self.sequence_generator = self.build_generator([model], gen_args)
return model
def _inference_with_wer(self, generator, sample, model):
import editdistance
def decode(toks):
s = self.target_dictionary.string(
toks.int().cpu(),
self.cfg.eval_wer_post_process,
escape_unk=True,
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
num_word_errors, num_char_errors = 0, 0
num_chars, num_words = 0, 0
gen_out = self.inference_step(generator, [model], sample, None)
for i in range(len(gen_out)):
hyp = decode(gen_out[i][0]["tokens"])
ref = decode(
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
)
num_char_errors += editdistance.eval(hyp, ref)
num_chars += len(ref)
hyp_words = hyp.split()
ref_words = ref.split()
num_word_errors += editdistance.eval(hyp_words, ref_words)
num_words += len(ref_words)
return {
"num_char_errors": num_char_errors,
"num_chars": num_chars,
"num_word_errors": num_word_errors,
"num_words": num_words,
}
def _inference_with_bleu(self, generator, sample, model):
import sacrebleu
def decode(toks, is_ref):
s = self.target_dictionary.string(
toks.int().cpu(),
self.cfg.eval_bleu_remove_bpe,
# The default unknown string in fairseq is `<unk>`, but
# this is tokenized by sacrebleu as `< unk >`, inflating
# BLEU scores. Instead, we use a somewhat more verbose
# alternative that is unlikely to appear in the real
# reference, but doesn't get split into multiple tokens.
unk_string=("UNKNOWNTOKENINREF" if is_ref else "UNKNOWNTOKENINHYP"),
)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
for i in range(len(gen_out)):
hyps.append(decode(gen_out[i][0]["tokens"], is_ref=False))
refs.append(
decode(
utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
is_ref=True, # don't count <unk> as matches to the hypo
)
)
if self.cfg.eval_bleu_print_samples:
logger.info("H-{} {}".format(sample["id"][0], hyps[0]))
logger.info("T-{} {}".format(sample["id"][0], refs[0]))
eval_tokenization = "none" if self.cfg.eval_tokenized_bleu else "13a"
return sacrebleu.corpus_bleu(hyps, [refs], tokenize=eval_tokenization)
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
if self.cfg.eval_wer:
zero = torch.scalar_tensor(0.0)
num_char_errors = sum(
log.get("_num_char_errors", zero) for log in logging_outputs
)
num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs)
num_word_errors = sum(
log.get("_num_word_errors", zero) for log in logging_outputs
)
num_words = sum(log.get("_num_words", zero) for log in logging_outputs)
metrics.log_scalar("_num_char_errors", num_char_errors)
metrics.log_scalar("_num_chars", num_chars)
metrics.log_scalar("_num_word_errors", num_word_errors)
metrics.log_scalar("_num_words", num_words)
if num_chars > 0:
metrics.log_derived(
"uer",
lambda meters: meters["_num_char_errors"].sum
* 100.0
/ meters["_num_chars"].sum
if meters["_num_chars"].sum > 0
else float("nan"),
)
if num_words > 0:
metrics.log_derived(
"wer",
lambda meters: meters["_num_word_errors"].sum
* 100.0
/ meters["_num_words"].sum
if meters["_num_words"].sum > 0
else float("nan"),
)
if self.cfg.eval_bleu:
len_keys = ["_bleu_sys_len", "_bleu_ref_len"]
count_keys = [f"_bleu_counts_{i}" for i in range(4)]
total_keys = [f"_bleu_totals_{i}" for i in range(4)]
for k in len_keys + count_keys + total_keys:
metrics.log_scalar(k, sum(log.get(k, 0) for log in logging_outputs))
import sacrebleu
metrics.log_derived(
"bleu",
lambda meters: sacrebleu.compute_bleu(
correct=[meters[k].sum for k in count_keys],
total=[meters[k].sum for k in total_keys],
sys_len=meters["_bleu_sys_len"].sum,
ref_len=meters["_bleu_ref_len"].sum,
smooth_method="exp",
).score,
)