STAR / fairseq /tasks /audio_classification.py
Yixuan Li
add fairseq folder
85ba398
raw
history blame
10.6 kB
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
from collections import OrderedDict
import itertools
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from omegaconf import II, MISSING
from sklearn import metrics as sklearn_metrics
from fairseq.data import AddTargetDataset, Dictionary, FileAudioDataset
from fairseq.data.multi_corpus_dataset import MultiCorpusDataset
from fairseq.data.text_compressor import TextCompressionLevel, TextCompressor
from fairseq.dataclass import FairseqDataclass
from fairseq.tasks.audio_pretraining import AudioPretrainingConfig, AudioPretrainingTask
from fairseq.tasks.audio_finetuning import label_len_fn, LabelEncoder
from .. import utils
from ..logging import metrics
from . import FairseqTask, register_task
logger = logging.getLogger(__name__)
@dataclass
class AudioClassificationConfig(AudioPretrainingConfig):
target_dictionary: Optional[str] = field(
default=None, metadata={"help": "override default dictionary location"}
)
@register_task("audio_classification", dataclass=AudioClassificationConfig)
class AudioClassificationTask(AudioPretrainingTask):
"""Task for audio classification tasks."""
cfg: AudioClassificationConfig
def __init__(
self,
cfg: AudioClassificationConfig,
):
super().__init__(cfg)
self.state.add_factory("target_dictionary", self.load_target_dictionary)
logging.info(f"=== Number of labels = {len(self.target_dictionary)}")
def load_target_dictionary(self):
if self.cfg.labels:
target_dictionary = self.cfg.data
if self.cfg.target_dictionary: # override dict
target_dictionary = self.cfg.target_dictionary
dict_path = os.path.join(target_dictionary, f"dict.{self.cfg.labels}.txt")
logger.info("Using dict_path : {}".format(dict_path))
return Dictionary.load(dict_path, add_special_symbols=False)
return None
def load_dataset(
self, split: str, task_cfg: AudioClassificationConfig = None, **kwargs
):
super().load_dataset(split, task_cfg, **kwargs)
task_cfg = task_cfg or self.cfg
assert task_cfg.labels is not None
text_compression_level = getattr(
TextCompressionLevel, str(self.cfg.text_compression_level)
)
data_path = self.cfg.data
if task_cfg.multi_corpus_keys is None:
label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}")
skipped_indices = getattr(self.datasets[split], "skipped_indices", set())
text_compressor = TextCompressor(level=text_compression_level)
with open(label_path, "r") as f:
labels = [
text_compressor.compress(l)
for i, l in enumerate(f)
if i not in skipped_indices
]
assert len(labels) == len(self.datasets[split]), (
f"labels length ({len(labels)}) and dataset length "
f"({len(self.datasets[split])}) do not match"
)
process_label = LabelEncoder(self.target_dictionary)
self.datasets[split] = AddTargetDataset(
self.datasets[split],
labels,
pad=self.target_dictionary.pad(),
eos=self.target_dictionary.eos(),
batch_targets=True,
process_label=process_label,
label_len_fn=label_len_fn,
add_to_input=False,
# text_compression_level=text_compression_level,
)
else:
target_dataset_map = OrderedDict()
multi_corpus_keys = [
k.strip() for k in task_cfg.multi_corpus_keys.split(",")
]
corpus_idx_map = {k: idx for idx, k in enumerate(multi_corpus_keys)}
data_keys = [k.split(":") for k in split.split(",")]
multi_corpus_sampling_weights = [
float(val.strip())
for val in task_cfg.multi_corpus_sampling_weights.split(",")
]
data_weights = []
for key, file_name in data_keys:
k = key.strip()
label_path = os.path.join(
data_path, f"{file_name.strip()}.{task_cfg.labels}"
)
skipped_indices = getattr(
self.dataset_map[split][k], "skipped_indices", set()
)
text_compressor = TextCompressor(level=text_compression_level)
with open(label_path, "r") as f:
labels = [
text_compressor.compress(l)
for i, l in enumerate(f)
if i not in skipped_indices
]
assert len(labels) == len(self.dataset_map[split][k]), (
f"labels length ({len(labels)}) and dataset length "
f"({len(self.dataset_map[split][k])}) do not match"
)
process_label = LabelEncoder(self.target_dictionary)
# TODO: Remove duplication of code from the if block above
target_dataset_map[k] = AddTargetDataset(
self.dataset_map[split][k],
labels,
pad=self.target_dictionary.pad(),
eos=self.target_dictionary.eos(),
batch_targets=True,
process_label=process_label,
label_len_fn=label_len_fn,
add_to_input=False,
# text_compression_level=text_compression_level,
)
data_weights.append(multi_corpus_sampling_weights[corpus_idx_map[k]])
if len(target_dataset_map) == 1:
self.datasets[split] = list(target_dataset_map.values())[0]
else:
self.datasets[split] = MultiCorpusDataset(
target_dataset_map,
distribution=data_weights,
seed=0,
sort_indices=True,
)
@property
def source_dictionary(self):
return None
@property
def target_dictionary(self):
"""Return the :class:`~fairseq.data.Dictionary` for the language
model."""
return self.state.target_dictionary
def train_step(self, sample, model, *args, **kwargs):
sample["target"] = sample["target"].to(dtype=torch.long)
loss, sample_size, logging_output = super().train_step(
sample, model, *args, **kwargs
)
self._log_metrics(sample, model, logging_output)
return loss, sample_size, logging_output
def valid_step(self, sample, model, criterion):
sample["target"] = sample["target"].to(dtype=torch.long)
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
self._log_metrics(sample, model, logging_output)
return loss, sample_size, logging_output
def _log_metrics(self, sample, model, logging_output):
metrics = self._inference_with_metrics(
sample,
model,
)
"""
logging_output["_precision"] = metrics["precision"]
logging_output["_recall"] = metrics["recall"]
logging_output["_f1"] = metrics["f1"]
logging_output["_eer"] = metrics["eer"]
logging_output["_accuracy"] = metrics["accuracy"]
"""
logging_output["_correct"] = metrics["correct"]
logging_output["_total"] = metrics["total"]
def _inference_with_metrics(self, sample, model):
def _compute_eer(target_list, lprobs):
# from scipy.optimize import brentq
# from scipy.interpolate import interp1d
y_one_hot = np.eye(len(self.state.target_dictionary))[target_list]
fpr, tpr, thresholds = sklearn_metrics.roc_curve(
y_one_hot.ravel(), lprobs.ravel()
)
# Revisit the interpolation approach.
# eer = brentq(lambda x: 1.0 - x - interp1d(fpr, tpr)(x), 0.0, 1.0)
fnr = 1 - tpr
eer = fpr[np.nanargmin(np.absolute((fnr - fpr)))]
return eer
with torch.no_grad():
net_output = model(**sample["net_input"])
lprobs = (
model.get_normalized_probs(net_output, log_probs=True).cpu().detach()
)
target_list = sample["target"][:, 0].detach().cpu()
predicted_list = torch.argmax(lprobs, 1).detach().cpu() # B,C->B
metrics = {
"correct": torch.sum(target_list == predicted_list).item(),
"total": len(target_list),
}
return metrics
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
zero = torch.scalar_tensor(0.0)
correct, total = 0, 0
for log in logging_outputs:
correct += log.get("_correct", zero)
total += log.get("_total", zero)
metrics.log_scalar("_correct", correct)
metrics.log_scalar("_total", total)
if total > 0:
def _fn_accuracy(meters):
if meters["_total"].sum > 0:
return utils.item(meters["_correct"].sum / meters["_total"].sum)
return float("nan")
metrics.log_derived("accuracy", _fn_accuracy)
"""
prec_sum, recall_sum, f1_sum, acc_sum, eer_sum = 0.0, 0.0, 0.0, 0.0, 0.0
for log in logging_outputs:
prec_sum += log.get("_precision", zero).item()
recall_sum += log.get("_recall", zero).item()
f1_sum += log.get("_f1", zero).item()
acc_sum += log.get("_accuracy", zero).item()
eer_sum += log.get("_eer", zero).item()
metrics.log_scalar("avg_precision", prec_sum / len(logging_outputs))
metrics.log_scalar("avg_recall", recall_sum / len(logging_outputs))
metrics.log_scalar("avg_f1", f1_sum / len(logging_outputs))
metrics.log_scalar("avg_accuracy", acc_sum / len(logging_outputs))
metrics.log_scalar("avg_eer", eer_sum / len(logging_outputs))
"""