Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import sys | |
| import torch | |
| from fairseq import utils | |
| class SequenceScorer(object): | |
| """Scores the target for a given source sentence.""" | |
| def __init__( | |
| self, | |
| tgt_dict, | |
| softmax_batch=None, | |
| compute_alignment=False, | |
| eos=None, | |
| symbols_to_strip_from_output=None, | |
| ): | |
| self.pad = tgt_dict.pad() | |
| self.eos = tgt_dict.eos() if eos is None else eos | |
| self.softmax_batch = softmax_batch or sys.maxsize | |
| assert self.softmax_batch > 0 | |
| self.compute_alignment = compute_alignment | |
| self.symbols_to_strip_from_output = ( | |
| symbols_to_strip_from_output.union({self.eos}) | |
| if symbols_to_strip_from_output is not None | |
| else {self.eos} | |
| ) | |
| def generate(self, models, sample, **kwargs): | |
| """Score a batch of translations.""" | |
| net_input = sample["net_input"] | |
| def batch_for_softmax(dec_out, target): | |
| # assumes decoder_out[0] is the only thing needed (may not be correct for future models!) | |
| first, rest = dec_out[0], dec_out[1:] | |
| bsz, tsz, dim = first.shape | |
| if bsz * tsz < self.softmax_batch: | |
| yield dec_out, target, True | |
| else: | |
| flat = first.contiguous().view(1, -1, dim) | |
| flat_tgt = target.contiguous().view(flat.shape[:-1]) | |
| s = 0 | |
| while s < flat.size(1): | |
| e = s + self.softmax_batch | |
| yield (flat[:, s:e],) + rest, flat_tgt[:, s:e], False | |
| s = e | |
| def gather_target_probs(probs, target): | |
| probs = probs.gather( | |
| dim=2, | |
| index=target.unsqueeze(-1), | |
| ) | |
| return probs | |
| orig_target = sample["target"] | |
| # compute scores for each model in the ensemble | |
| avg_probs = None | |
| avg_attn = None | |
| for model in models: | |
| model.eval() | |
| decoder_out = model(**net_input) | |
| attn = decoder_out[1] if len(decoder_out) > 1 else None | |
| if type(attn) is dict: | |
| attn = attn.get("attn", None) | |
| batched = batch_for_softmax(decoder_out, orig_target) | |
| probs, idx = None, 0 | |
| for bd, tgt, is_single in batched: | |
| sample["target"] = tgt | |
| curr_prob = model.get_normalized_probs( | |
| bd, log_probs=len(models) == 1, sample=sample | |
| ).data | |
| if is_single: | |
| probs = gather_target_probs(curr_prob, orig_target) | |
| else: | |
| if probs is None: | |
| probs = curr_prob.new(orig_target.numel()) | |
| step = curr_prob.size(0) * curr_prob.size(1) | |
| end = step + idx | |
| tgt_probs = gather_target_probs( | |
| curr_prob.view(tgt.shape + (curr_prob.size(-1),)), tgt | |
| ) | |
| probs[idx:end] = tgt_probs.view(-1) | |
| idx = end | |
| sample["target"] = orig_target | |
| probs = probs.view(sample["target"].shape) | |
| if avg_probs is None: | |
| avg_probs = probs | |
| else: | |
| avg_probs.add_(probs) | |
| if attn is not None: | |
| if torch.is_tensor(attn): | |
| attn = attn.data | |
| else: | |
| attn = attn[0] | |
| if avg_attn is None: | |
| avg_attn = attn | |
| else: | |
| avg_attn.add_(attn) | |
| if len(models) > 1: | |
| avg_probs.div_(len(models)) | |
| avg_probs.log_() | |
| if avg_attn is not None: | |
| avg_attn.div_(len(models)) | |
| bsz = avg_probs.size(0) | |
| hypos = [] | |
| start_idxs = sample["start_indices"] if "start_indices" in sample else [0] * bsz | |
| for i in range(bsz): | |
| # remove padding from ref | |
| ref = ( | |
| utils.strip_pad(sample["target"][i, start_idxs[i] :], self.pad) | |
| if sample["target"] is not None | |
| else None | |
| ) | |
| tgt_len = ref.numel() | |
| avg_probs_i = avg_probs[i][start_idxs[i] : start_idxs[i] + tgt_len] | |
| score_i = avg_probs_i.sum() / tgt_len | |
| if avg_attn is not None: | |
| avg_attn_i = avg_attn[i] | |
| if self.compute_alignment: | |
| alignment = utils.extract_hard_alignment( | |
| avg_attn_i, | |
| sample["net_input"]["src_tokens"][i], | |
| sample["target"][i], | |
| self.pad, | |
| self.eos, | |
| ) | |
| else: | |
| alignment = None | |
| else: | |
| avg_attn_i = alignment = None | |
| hypos.append( | |
| [ | |
| { | |
| "tokens": ref, | |
| "score": score_i, | |
| "attention": avg_attn_i, | |
| "alignment": alignment, | |
| "positional_scores": avg_probs_i, | |
| } | |
| ] | |
| ) | |
| return hypos | |