Spaces:
Runtime error
Runtime error
| import math | |
| from functools import reduce, wraps | |
| from inspect import isfunction | |
| from operator import mul | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from aml.multimodal_video.utils.einops.lib import rearrange, repeat | |
| from aml.multimodal_video.utils.einops.lib.layers.torch import Rearrange | |
| from fairseq.modules.local_attention import LocalAttention | |
| # constants | |
| TOKEN_SELF_ATTN_VALUE = -5e4 | |
| KMEAN_INIT_ITERS = 10 | |
| # helper functions | |
| def exists(val): | |
| return val is not None | |
| def identity(x, *args, **kwargs): | |
| return x | |
| def default(x, d): | |
| if not exists(x): | |
| return d if not isfunction(d) else d() | |
| return x | |
| def cast_tuple(x): | |
| return x if isinstance(x, tuple) else (x,) | |
| def cache_fn(f): | |
| cache = None | |
| def cached_fn(*args, **kwargs): | |
| nonlocal cache | |
| if exists(cache): | |
| return cache | |
| cache = f(*args, **kwargs) | |
| return cache | |
| return cached_fn | |
| def to(t): | |
| return {"device": t.device, "dtype": t.dtype} | |
| def find_modules(nn_module, type): | |
| return [module for module in nn_module.modules() if isinstance(module, type)] | |
| def is_empty(t): | |
| return t.nelement() == 0 | |
| def max_neg_value(tensor): | |
| return -torch.finfo(tensor.dtype).max | |
| def batched_index_select(values, indices): | |
| last_dim = values.shape[-1] | |
| return values.gather(2, expand_dim(indices, -1, last_dim)) | |
| def merge_dims(ind_from, ind_to, tensor): | |
| shape = list(tensor.shape) | |
| arr_slice = slice(ind_from, ind_to + 1) | |
| shape[arr_slice] = [reduce(mul, shape[arr_slice])] | |
| return tensor.reshape(*shape) | |
| def expand_dim(t, dim, k): | |
| t = t.unsqueeze(dim) | |
| expand_shape = [-1] * len(t.shape) | |
| expand_shape[dim] = k | |
| return t.expand(*expand_shape) | |
| def scatter_mean(src, t, index, dim, eps=1e-5): | |
| numer = src.scatter_add(dim, index, t) | |
| denom = src.scatter_add(dim, index, torch.ones_like(t)) | |
| return numer / (denom + eps) | |
| def split_at_index(dim, index, t): | |
| pre_slices = (slice(None),) * dim | |
| l = (*pre_slices, slice(None, index)) | |
| r = (*pre_slices, slice(index, None)) | |
| return t[l], t[r] | |
| def reshape_dim(t, dim, split_dims): | |
| shape = list(t.shape) | |
| num_dims = len(shape) | |
| dim = (dim + num_dims) % num_dims | |
| shape[dim : dim + 1] = split_dims | |
| return t.reshape(shape) | |
| def ema(old, new, decay): | |
| if not exists(old): | |
| return new | |
| return old * decay + new * (1 - decay) | |
| def ema_inplace(moving_avg, new, decay): | |
| if is_empty(moving_avg): | |
| moving_avg.data.copy_(new) | |
| return | |
| moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
| # helper classes | |
| def map_first_tuple_or_el(x, fn): | |
| if isinstance(x, tuple): | |
| return (fn(x[0]),) + x[1:] | |
| return fn(x) | |
| class Chunk(nn.Module): | |
| def __init__(self, chunks, fn, along_dim=-1): | |
| super().__init__() | |
| self.dim = along_dim | |
| self.chunks = chunks | |
| self.fn = fn | |
| def forward(self, x, **kwargs): | |
| if self.chunks <= 1: | |
| return self.fn(x, **kwargs) | |
| chunks = x.chunk(self.chunks, dim=self.dim) | |
| return torch.cat([self.fn(c, **kwargs) for c in chunks], dim=self.dim) | |
| class PreNorm(nn.ModuleList): | |
| def __init__(self, norm_class, dim, fn): | |
| super().__init__() | |
| self.norm = norm_class(dim) | |
| self.fn = fn | |
| def forward(self, x, **kwargs): | |
| x = self.norm(x) | |
| return self.fn(x, **kwargs) | |
| class ReZero(nn.Module): | |
| def __init__(self, fn): | |
| super().__init__() | |
| self.residual_weight = nn.Parameter(torch.zeros(1)) | |
| self.fn = fn | |
| def forward(self, x, **kwargs): | |
| x = self.fn(x, **kwargs) | |
| return map_first_tuple_or_el(x, lambda t: t * self.residual_weight) | |
| class ScaleNorm(nn.Module): | |
| def __init__(self, dim, eps=1e-5): | |
| super().__init__() | |
| self.g = nn.Parameter(torch.ones(1)) | |
| self.eps = eps | |
| def forward(self, x): | |
| def norm(t): | |
| n = torch.norm(t, dim=-1, keepdim=True).clamp(min=self.eps) | |
| return t / n * self.g | |
| return map_first_tuple_or_el(x, norm) | |
| class ProjectInOut(nn.Module): | |
| def __init__(self, fn, dim_in, dim_out, project_out=True): | |
| super().__init__() | |
| self.fn = fn | |
| self.project_in = nn.Linear(dim_in, dim_out) | |
| self.project_out = nn.Linear(dim_out, dim_in) if project_out else identity | |
| def forward(self, x, **kwargs): | |
| x = self.project_in(x) | |
| x, loss = self.fn(x, **kwargs) | |
| x = self.project_out(x) | |
| return x, loss | |
| class MatrixMultiply(nn.Module): | |
| def __init__(self, tensor, transpose=False): | |
| super().__init__() | |
| self.tensor = tensor | |
| self.transpose = transpose | |
| def forward(self, x): | |
| tensor = self.tensor | |
| if self.transpose: | |
| tensor = tensor.t() | |
| return x @ tensor | |
| # positional embeddings | |
| class DepthWiseConv1d(nn.Module): | |
| def __init__(self, dim_in, dim_out, kernel_size, stride=1, bias=True, causal=False): | |
| super().__init__() | |
| self.padding = ( | |
| ((kernel_size - 1), 0) if causal else (kernel_size // 2, kernel_size // 2) | |
| ) | |
| self.net = nn.Sequential( | |
| nn.Conv1d( | |
| dim_in, | |
| dim_in, | |
| kernel_size=kernel_size, | |
| groups=dim_in, | |
| stride=stride, | |
| bias=bias, | |
| ), | |
| nn.Conv1d(dim_in, dim_out, 1, bias=bias), | |
| ) | |
| def forward(self, x): | |
| x = F.pad(x, self.padding, value=0.0) | |
| return self.net(x) | |
| class FixedPositionalEmbedding(nn.Module): | |
| def __init__(self, dim, max_seq_len): | |
| super().__init__() | |
| inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
| position = torch.arange(0, max_seq_len, dtype=torch.float) | |
| sinusoid_inp = torch.einsum("i,j->ij", position, inv_freq) | |
| emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) | |
| self.register_buffer("emb", emb) | |
| def forward(self, x): | |
| return self.emb[None, : x.shape[1], :].to(x) | |
| def rotate_every_two(x): | |
| x = rearrange(x, "... (d j) -> ... d j", j=2) | |
| x1, x2 = x.unbind(dim=-1) | |
| x = torch.stack((-x2, x1), dim=-1) | |
| return rearrange(x, "... d j -> ... (d j)") | |
| def apply_rotary_pos_emb(q, k, sinu_pos): | |
| sinu_pos = rearrange(sinu_pos, "() n (j d) -> n j d", j=2) | |
| sin, cos = sinu_pos.unbind(dim=-2) | |
| sin, cos = map(lambda t: repeat(t, "b n -> b (n j)", j=2), (sin, cos)) | |
| q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k)) | |
| return q, k | |
| # kmeans related function and class | |
| def update_kmeans_on_backwards(module): | |
| module.kmean_modules = find_modules(module, Kmeans) | |
| def hook(_, grad_in, grad_out): | |
| for m in module.kmean_modules: | |
| m.update() | |
| return module.register_backward_hook(hook) | |
| def similarity(x, means): | |
| return torch.einsum("bhld,hcd->bhlc", x, means) | |
| def dists_and_buckets(x, means): | |
| dists = similarity(x, means) | |
| _, buckets = torch.max(dists, dim=-1) | |
| return dists, buckets | |
| def batched_bincount(index, num_classes, dim=-1): | |
| shape = list(index.shape) | |
| shape[dim] = num_classes | |
| out = index.new_zeros(shape) | |
| out.scatter_add_(dim, index, torch.ones_like(index, dtype=index.dtype)) | |
| return out | |
| def kmeans_iter(x, means, buckets=None): | |
| b, h, _, d, dtype, num_clusters = *x.shape, x.dtype, means.shape[1] | |
| if not exists(buckets): | |
| _, buckets = dists_and_buckets(x, means) | |
| bins = batched_bincount(buckets, num_clusters).sum(0, keepdim=True) | |
| zero_mask = bins.long() == 0 | |
| means_ = buckets.new_zeros(b, h, num_clusters, d, dtype=dtype) | |
| means_.scatter_add_(-2, expand_dim(buckets, -1, d), x) | |
| means_ = F.normalize(means_.sum(0, keepdim=True), dim=-1).type(dtype) | |
| means = torch.where(zero_mask.unsqueeze(-1), means, means_) | |
| means = means.squeeze(0) | |
| return means | |
| def distribution(dists, window_size): | |
| _, topk_indices = dists.topk(k=window_size, dim=-2) | |
| indices = topk_indices.transpose(-2, -1) | |
| return indices.reshape(*indices.size()[:2], -1) | |
| class Kmeans(nn.Module): | |
| def __init__( | |
| self, num_heads, head_dim, num_clusters, ema_decay=0.999, commitment=1e-4 | |
| ): | |
| super().__init__() | |
| self.commitment = commitment | |
| self.ema_decay = ema_decay | |
| self.register_buffer("means", torch.randn(num_heads, num_clusters, head_dim)) | |
| self.register_buffer("initted", torch.tensor(False)) | |
| self.num_new_means = 0 | |
| self.new_means = None | |
| def init(self, x): | |
| if self.initted: | |
| return | |
| _, h, _, d, device, _ = *x.shape, x.device, x.dtype | |
| num_clusters = self.means.shape[1] | |
| means = x.transpose(0, 1).contiguous().view(h, -1, d) | |
| num_samples = means.shape[1] | |
| if num_samples >= num_clusters: | |
| indices = torch.randperm(num_samples, device=device)[:num_clusters] | |
| else: | |
| indices = torch.randint(0, num_samples, (num_clusters,), device=device) | |
| means = means[:, indices] | |
| for _ in range(KMEAN_INIT_ITERS): | |
| means = kmeans_iter(x, means) | |
| self.num_new_means = 0 | |
| self.means.data.copy_(means) | |
| self.initted.data.copy_(torch.tensor(True)) | |
| def update(self, new_means=None): | |
| new_means = default(new_means, self.new_means) | |
| assert exists(new_means), "new kmeans has not been supplied" | |
| ema_inplace(self.means, new_means, self.ema_decay) | |
| del self.new_means | |
| self.new_means = None | |
| self.num_new_means = 0 | |
| def forward(self, x, update_means=False): | |
| self.init(x) | |
| b, dtype = x.shape[0], x.dtype | |
| means = self.means.type(dtype) | |
| x = F.normalize(x, 2, dim=-1).type(dtype) | |
| with torch.no_grad(): | |
| dists, buckets = dists_and_buckets(x, means) | |
| routed_means = batched_index_select(expand_dim(means, 0, b), buckets) | |
| loss = F.mse_loss(x, routed_means) * self.commitment | |
| if update_means: | |
| with torch.no_grad(): | |
| means = kmeans_iter(x, means, buckets) | |
| self.new_means = ema( | |
| self.new_means, means, self.num_new_means / (self.num_new_means + 1) | |
| ) | |
| self.num_new_means += 1 | |
| return dists, loss | |
| # kmeans attention class | |
| class KmeansAttention(nn.Module): | |
| def __init__( | |
| self, | |
| num_clusters, | |
| window_size, | |
| num_heads, | |
| head_dim, | |
| causal=False, | |
| dropout=0.0, | |
| ema_decay=0.999, | |
| commitment=1e-4, | |
| context_window_size=None, | |
| receives_context=False, | |
| num_mem_kv=0, | |
| shared_qk=False, | |
| ): | |
| super().__init__() | |
| self.num_heads = num_heads | |
| self.num_clusters = num_clusters | |
| self.head_dim = head_dim | |
| self.window_size = window_size | |
| self.context_window_size = default(context_window_size, window_size) | |
| self.causal = causal | |
| self.shared_qk = shared_qk | |
| self.receives_context = receives_context | |
| self.kmeans = Kmeans(num_heads, head_dim, num_clusters, ema_decay, commitment) | |
| self.dropout = nn.Dropout(dropout) | |
| self.num_mem_kv = max(num_mem_kv, 1 if causal and not shared_qk else 0) | |
| self.mem_key = nn.Parameter( | |
| torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim) | |
| ) | |
| self.mem_value = nn.Parameter( | |
| torch.randn(num_heads, num_clusters, self.num_mem_kv, head_dim) | |
| ) | |
| def forward(self, q, k, v, query_mask=None, key_mask=None, **kwargs): | |
| b, h, t, d, kv_t, wsz, c_wsz, nc, device, dtype = ( | |
| *q.shape, | |
| k.shape[2], | |
| self.window_size, | |
| self.context_window_size, | |
| self.num_clusters, | |
| q.device, | |
| q.dtype, | |
| ) | |
| is_reverse = kwargs.pop("_reverse", False) | |
| out = torch.zeros_like(q, dtype=dtype) | |
| update_kmeans = self.training and not is_reverse | |
| key_mask = ( | |
| default(key_mask, query_mask) if not self.receives_context else key_mask | |
| ) | |
| kv_wsz = wsz if not self.receives_context else c_wsz | |
| wsz = min(wsz, t) | |
| kv_wsz = min(kv_wsz, kv_t) | |
| if not self.shared_qk or self.receives_context: | |
| dists, aux_loss = self.kmeans(torch.cat((q, k), dim=2), update_kmeans) | |
| q_dists, k_dists = split_at_index(2, t, dists) | |
| indices = distribution(q_dists, wsz) | |
| kv_indices = distribution(k_dists, kv_wsz) | |
| else: | |
| dists, aux_loss = self.kmeans(q, update_kmeans) | |
| k = F.normalize(k, dim=-1).to(q) | |
| indices = distribution(dists, wsz) | |
| kv_indices = indices | |
| q = batched_index_select(q, indices) | |
| k = batched_index_select(k, kv_indices) | |
| v = batched_index_select(v, kv_indices) | |
| reshape_with_window = lambda x: x.reshape(b, h, nc, -1, d) | |
| q, k, v = map(reshape_with_window, (q, k, v)) | |
| m_k, m_v = map( | |
| lambda x: expand_dim(x, 0, b).to(q), (self.mem_key, self.mem_value) | |
| ) | |
| k, v = map(lambda x: torch.cat(x, dim=3), ((m_k, k), (m_v, v))) | |
| dots = torch.einsum("bhnid,bhnjd->bhnij", q, k) * (d**-0.5) | |
| mask_value = max_neg_value(dots) | |
| if exists(query_mask) or exists(key_mask): | |
| query_mask = default( | |
| query_mask, lambda: torch.ones((b, t), device=device).bool() | |
| ) | |
| key_mask = default( | |
| key_mask, lambda: torch.ones((b, kv_t), device=device).bool() | |
| ) | |
| q_mask = expand_dim(query_mask, 1, h).gather(2, indices) | |
| kv_mask = expand_dim(key_mask, 1, h).gather(2, kv_indices) | |
| q_mask, kv_mask = map(lambda t: t.reshape(b, h, nc, -1), (q_mask, kv_mask)) | |
| mask = q_mask[:, :, :, :, None] * kv_mask[:, :, :, None, :] | |
| mask = F.pad(mask, (self.num_mem_kv, 0), value=1) | |
| dots.masked_fill_(~mask, mask_value) | |
| del mask | |
| if self.causal: | |
| q_mask, kv_mask = map( | |
| lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices) | |
| ) | |
| mask = q_mask[:, :, :, :, None] >= kv_mask[:, :, :, None, :] | |
| mask = F.pad(mask, (self.num_mem_kv, 0), value=1) | |
| dots.masked_fill_(~mask, mask_value) | |
| del mask | |
| if self.shared_qk: | |
| q_mask, kv_mask = map( | |
| lambda t: t.reshape(b, h, nc, -1), (indices, kv_indices) | |
| ) | |
| mask = q_mask[:, :, :, :, None] == kv_mask[:, :, :, None, :] | |
| mask = F.pad(mask, (self.num_mem_kv, 0), value=0) | |
| dots.masked_fill_(mask, TOKEN_SELF_ATTN_VALUE) | |
| del mask | |
| dots = dots.softmax(dim=-1) | |
| dots = self.dropout(dots) | |
| bo = torch.einsum("bhcij,bhcjd->bhcid", dots, v) | |
| so = torch.reshape(bo, (b, h, -1, bo.shape[-1])).type(dtype) | |
| out = scatter_mean(out, so, indices.unsqueeze(-1).expand_as(so), -2) | |
| return out, aux_loss | |
| # feedforward | |
| class GELU_(nn.Module): | |
| def forward(self, x): | |
| return ( | |
| 0.5 | |
| * x | |
| * ( | |
| 1 | |
| + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))) | |
| ) | |
| ) | |
| GELU = nn.GELU if hasattr(nn, "GELU") else GELU_ | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, mult=4, dropout=0.0, activation=None, glu=False): | |
| super().__init__() | |
| activation = default(activation, GELU) | |
| self.glu = glu | |
| self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1)) | |
| self.act = activation() | |
| self.dropout = nn.Dropout(dropout) | |
| self.w2 = nn.Linear(dim * mult, dim) | |
| def forward(self, x, **kwargs): | |
| if not self.glu: | |
| x = self.w1(x) | |
| x = self.act(x) | |
| else: | |
| x, v = self.w1(x).chunk(2, dim=-1) | |
| x = self.act(x) * v | |
| x = self.dropout(x) | |
| x = self.w2(x) | |
| return x | |
| # self attention | |
| class SelfAttention(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| max_seq_len, | |
| heads, | |
| local_attn_heads, | |
| window_size, | |
| dim_head=None, | |
| local_attn_window_size=None, | |
| local_attn_radius_blocks=1, | |
| causal=False, | |
| attn_dropout=0.0, | |
| dropout=0.0, | |
| kmeans_ema_decay=0.999, | |
| commitment_factor=1e-4, | |
| receives_context=False, | |
| context_window_size=None, | |
| rel_pos_emb=True, | |
| num_mem_kv=0, | |
| shared_qk=False, | |
| conv_query_kernel=9, | |
| ): | |
| super().__init__() | |
| assert ( | |
| dim_head or (dim % heads) == 0 | |
| ), "hidden dimension must be divisible by number of heads" | |
| assert ( | |
| max_seq_len % window_size | |
| ) == 0, "maximum sequence length must be divisible by the target window size" | |
| assert ( | |
| local_attn_heads <= heads | |
| ), "number of local attention heads must be less than total heads" | |
| assert not ( | |
| receives_context and local_attn_heads > 0 | |
| ), "local attention cannot be used for self attention with context" | |
| assert not ( | |
| receives_context and causal | |
| ), "contextual attention layer cannot be causal" | |
| local_attn_window_size = default(local_attn_window_size, window_size) | |
| context_window_size = default(context_window_size, window_size) | |
| self.shared_qk = shared_qk | |
| self.receives_context = receives_context | |
| self.heads = heads | |
| self.local_attn_heads = local_attn_heads | |
| self.global_attn_heads = heads - local_attn_heads | |
| self.causal = causal | |
| self.window_size = window_size | |
| dim_head = default(dim_head, dim // heads) | |
| dim_heads = dim_head * heads | |
| self.dim_head = dim_head | |
| num_clusters = max_seq_len // window_size | |
| # local | |
| local_dim_heads = dim_head * self.local_attn_heads | |
| if self.local_attn_heads > 0: | |
| rel_pos_emb_config = (dim_head, local_attn_heads) if rel_pos_emb else None | |
| self.local_attn = LocalAttention( | |
| dim=dim_head, | |
| window_size=local_attn_window_size, | |
| causal=causal, | |
| dropout=attn_dropout, | |
| rel_pos_emb_config=rel_pos_emb_config, | |
| look_backward=local_attn_radius_blocks, | |
| look_forward=0 if causal else local_attn_radius_blocks, | |
| ) | |
| self.local_to_qkv = nn.Linear(dim, 3 * local_dim_heads) | |
| # global | |
| global_dim_heads = dim_head * self.global_attn_heads | |
| if self.global_attn_heads > 0: | |
| self.global_attn = KmeansAttention( | |
| num_clusters, | |
| window_size, | |
| self.global_attn_heads, | |
| dim_head, | |
| causal=causal, | |
| dropout=attn_dropout, | |
| ema_decay=kmeans_ema_decay, | |
| commitment=commitment_factor, | |
| receives_context=receives_context, | |
| num_mem_kv=num_mem_kv, | |
| shared_qk=shared_qk, | |
| ) | |
| self.to_q = nn.Sequential( | |
| Rearrange("b n c -> b c n"), | |
| DepthWiseConv1d(dim, global_dim_heads, conv_query_kernel, causal=causal), | |
| Rearrange("b c n -> b n c"), | |
| ) | |
| self.to_v = nn.Linear(dim, global_dim_heads, bias=False) | |
| if not self.shared_qk: | |
| self.to_k = nn.Linear(dim, global_dim_heads, bias=False) | |
| # out | |
| self.to_out = nn.Linear(dim_heads, dim, bias=False) | |
| self.dropout = nn.Dropout(dropout) | |
| def forward( | |
| self, | |
| query, | |
| key, | |
| value, | |
| context=None, | |
| key_padding_mask=None, | |
| context_mask=None, | |
| pos_emb=None, | |
| **kwargs | |
| ): | |
| assert not ( | |
| self.receives_context and not exists(context) | |
| ), "context must be passed if self attention is set to receive context" | |
| input_mask = key_padding_mask | |
| x = query.transpose(0, 1) | |
| b, t, _, h, dh = *x.shape, self.heads, self.dim_head | |
| has_local, has_global = map( | |
| lambda x: x > 0, (self.local_attn_heads, self.global_attn_heads) | |
| ) | |
| split_heads = ( | |
| lambda v: reshape_dim(v, -1, (-1, dh)).transpose(1, 2).contiguous() | |
| ) | |
| if has_local: | |
| local_qkv = self.local_to_qkv(x).chunk(3, dim=-1) | |
| lq, lk, lv = map(split_heads, local_qkv) | |
| if has_global: | |
| kv_input = x if not self.receives_context else context | |
| q, v = self.to_q(x), self.to_v(kv_input) | |
| if not self.shared_qk: | |
| k = self.to_k(kv_input) | |
| else: | |
| k = self.to_q(kv_input) if self.receives_context else q | |
| q, k, v = map(split_heads, (q, k, v)) | |
| out = [] | |
| total_loss = torch.tensor(0.0, requires_grad=True, **to(x)) | |
| if has_local: | |
| local_out = self.local_attn(lq, lk, lv, input_mask=input_mask) | |
| out.append(local_out) | |
| if has_global: | |
| if not self.receives_context and exists(pos_emb): | |
| q, k = apply_rotary_pos_emb(q, k, pos_emb) | |
| global_out, loss = self.global_attn( | |
| q, k, v, query_mask=input_mask, key_mask=context_mask | |
| ) | |
| total_loss = total_loss + loss | |
| out.append(global_out) | |
| out = torch.cat(out, dim=1) | |
| out = out.reshape(b, h, t, -1).transpose(1, 2).reshape(b, t, -1) | |
| out = self.dropout(out.transpose(0, 1)) | |
| # out = self.to_out(out) | |
| return out, total_loss | |