Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import math | |
| from dataclasses import dataclass, field | |
| from typing import List, Tuple | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from fairseq import utils | |
| from fairseq.data.data_utils import compute_mask_indices | |
| from fairseq.dataclass import ChoiceEnum, FairseqDataclass | |
| from fairseq.distributed import fsdp_wrap | |
| from fairseq.models import BaseFairseqModel, register_model | |
| from fairseq.distributed.fully_sharded_data_parallel import FullyShardedDataParallel | |
| from fairseq.modules import ( | |
| Fp32GroupNorm, | |
| Fp32LayerNorm, | |
| GradMultiply, | |
| GumbelVectorQuantizer, | |
| LayerNorm, | |
| MultiheadAttention, | |
| RelPositionalEncoding, | |
| SamePad, | |
| TransposeLast, | |
| ) | |
| from fairseq.modules.checkpoint_activations import checkpoint_wrapper | |
| from fairseq.modules.conformer_layer import ConformerWav2Vec2EncoderLayer | |
| from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
| from fairseq.utils import buffered_arange, index_put, is_xla_tensor | |
| from .utils import pad_to_multiple | |
| EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) | |
| MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"]) | |
| LAYER_TYPE_CHOICES = ChoiceEnum(["transformer", "conformer", "trf_adp"]) | |
| class Wav2Vec2Config(FairseqDataclass): | |
| extractor_mode: EXTRACTOR_MODE_CHOICES = field( | |
| default="default", | |
| metadata={ | |
| "help": "mode for feature extractor. default has a single group norm with d " | |
| "groups in the first conv block, whereas layer_norm has layer norms in " | |
| "every block (meant to use with normalize=True)" | |
| }, | |
| ) | |
| encoder_layers: int = field( | |
| default=12, metadata={"help": "num encoder layers in the transformer"} | |
| ) | |
| encoder_embed_dim: int = field( | |
| default=768, metadata={"help": "encoder embedding dimension"} | |
| ) | |
| encoder_ffn_embed_dim: int = field( | |
| default=3072, metadata={"help": "encoder embedding dimension for FFN"} | |
| ) | |
| encoder_attention_heads: int = field( | |
| default=12, metadata={"help": "num encoder attention heads"} | |
| ) | |
| activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( | |
| default="gelu", metadata={"help": "activation function to use"} | |
| ) | |
| layer_type: LAYER_TYPE_CHOICES = field( | |
| default="transformer", metadata={"help": "layer type in encoder"} | |
| ) | |
| # dropouts | |
| dropout: float = field( | |
| default=0.1, metadata={"help": "dropout probability for the transformer"} | |
| ) | |
| attention_dropout: float = field( | |
| default=0.1, metadata={"help": "dropout probability for attention weights"} | |
| ) | |
| activation_dropout: float = field( | |
| default=0.0, metadata={"help": "dropout probability after activation in FFN"} | |
| ) | |
| encoder_layerdrop: float = field( | |
| default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"} | |
| ) | |
| dropout_input: float = field( | |
| default=0.0, | |
| metadata={"help": "dropout to apply to the input (after feat extr)"}, | |
| ) | |
| dropout_features: float = field( | |
| default=0.0, | |
| metadata={"help": "dropout to apply to the features (after feat extr)"}, | |
| ) | |
| final_dim: int = field( | |
| default=0, | |
| metadata={ | |
| "help": "project final representations and targets to this many dimensions." | |
| "set to encoder_embed_dim is <= 0" | |
| }, | |
| ) | |
| layer_norm_first: bool = field( | |
| default=False, metadata={"help": "apply layernorm first in the transformer"} | |
| ) | |
| conv_feature_layers: str = field( | |
| default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]", | |
| metadata={ | |
| "help": "string describing convolutional feature extraction layers in form of a python list that contains " | |
| "[(dim, kernel_size, stride), ...]" | |
| }, | |
| ) | |
| conv_bias: bool = field( | |
| default=False, metadata={"help": "include bias in conv encoder"} | |
| ) | |
| logit_temp: float = field( | |
| default=0.1, metadata={"help": "temperature to divide logits by"} | |
| ) | |
| quantize_targets: bool = field( | |
| default=False, metadata={"help": "use quantized targets"} | |
| ) | |
| quantize_input: bool = field( | |
| default=False, metadata={"help": "use quantized inputs"} | |
| ) | |
| same_quantizer: bool = field( | |
| default=False, metadata={"help": "use same quantizer for inputs and targets"} | |
| ) | |
| target_glu: bool = field( | |
| default=False, metadata={"help": "adds projection + glu to targets"} | |
| ) | |
| feature_grad_mult: float = field( | |
| default=1.0, metadata={"help": "multiply feature extractor var grads by this"} | |
| ) | |
| quantizer_depth: int = field( | |
| default=1, | |
| metadata={"help": "number of quantizer layers"}, | |
| ) | |
| quantizer_factor: int = field( | |
| default=3, | |
| metadata={ | |
| "help": "dimensionality increase for inner quantizer layers (if depth > 1)" | |
| }, | |
| ) | |
| latent_vars: int = field( | |
| default=320, | |
| metadata={"help": "number of latent variables V in each group of the codebook"}, | |
| ) | |
| latent_groups: int = field( | |
| default=2, | |
| metadata={"help": "number of groups G of latent variables in the codebook"}, | |
| ) | |
| latent_dim: int = field( | |
| default=0, | |
| metadata={ | |
| "help": "if > 0, uses this dimensionality for latent variables. " | |
| "otherwise uses final_dim / latent_groups" | |
| }, | |
| ) | |
| # masking | |
| mask_length: int = field(default=10, metadata={"help": "mask length"}) | |
| mask_prob: float = field( | |
| default=0.65, metadata={"help": "probability of replacing a token with mask"} | |
| ) | |
| mask_selection: MASKING_DISTRIBUTION_CHOICES = field( | |
| default="static", metadata={"help": "how to choose mask length"} | |
| ) | |
| mask_other: float = field( | |
| default=0, | |
| metadata={ | |
| "help": "secondary mask argument (used for more complex distributions), " | |
| "see help in compute_mask_indices" | |
| }, | |
| ) | |
| no_mask_overlap: bool = field( | |
| default=False, metadata={"help": "whether to allow masks to overlap"} | |
| ) | |
| mask_min_space: int = field( | |
| default=1, | |
| metadata={"help": "min space between spans (if no overlap is enabled)"}, | |
| ) | |
| require_same_masks: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": "whether to number of masked timesteps must be the same across all " | |
| "examples in a batch" | |
| }, | |
| ) | |
| mask_dropout: float = field( | |
| default=0.0, | |
| metadata={"help": "percent of masks to unmask for each sample"}, | |
| ) | |
| # channel masking | |
| mask_channel_length: int = field( | |
| default=10, metadata={"help": "length of the mask for features (channels)"} | |
| ) | |
| mask_channel_prob: float = field( | |
| default=0.0, metadata={"help": "probability of replacing a feature with 0"} | |
| ) | |
| mask_channel_before: bool = False | |
| mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( | |
| default="static", | |
| metadata={"help": "how to choose mask length for channel masking"}, | |
| ) | |
| mask_channel_other: float = field( | |
| default=0, | |
| metadata={ | |
| "help": "secondary mask argument (used for more complex distributions), " | |
| "see help in compute_mask_indicesh" | |
| }, | |
| ) | |
| no_mask_channel_overlap: bool = field( | |
| default=False, metadata={"help": "whether to allow channel masks to overlap"} | |
| ) | |
| mask_channel_min_space: int = field( | |
| default=1, | |
| metadata={"help": "min space between spans (if no overlap is enabled)"}, | |
| ) | |
| # negative selection | |
| num_negatives: int = field( | |
| default=100, | |
| metadata={"help": "number of negative examples from the same sample"}, | |
| ) | |
| negatives_from_everywhere: bool = field( | |
| default=False, | |
| metadata={"help": "sample negatives from everywhere, not just masked states"}, | |
| ) | |
| cross_sample_negatives: int = field( | |
| default=0, metadata={"help": "number of negative examples from the any sample"} | |
| ) | |
| codebook_negatives: int = field( | |
| default=0, metadata={"help": "number of negative examples codebook"} | |
| ) | |
| # positional embeddings | |
| conv_pos: int = field( | |
| default=128, | |
| metadata={"help": "number of filters for convolutional positional embeddings"}, | |
| ) | |
| conv_pos_groups: int = field( | |
| default=16, | |
| metadata={"help": "number of groups for convolutional positional embedding"}, | |
| ) | |
| pos_conv_depth: int = field( | |
| default=1, | |
| metadata={"help": "depth of positional encoder network"}, | |
| ) | |
| latent_temp: Tuple[float, float, float] = field( | |
| default=(2, 0.5, 0.999995), | |
| metadata={ | |
| "help": "temperature for latent variable sampling. " | |
| "can be tuple of 3 values (start, end, decay)" | |
| }, | |
| ) | |
| max_positions: int = field(default=100000, metadata={"help": "Max positions"}) | |
| checkpoint_activations: bool = field( | |
| default=False, | |
| metadata={"help": "recompute activations and save memory for extra compute"}, | |
| ) | |
| # FP16 optimization | |
| required_seq_len_multiple: int = field( | |
| default=2, | |
| metadata={ | |
| "help": "pad the input to encoder such that the sequence length is divisible by multiple" | |
| }, | |
| ) | |
| crop_seq_to_multiple: int = field( | |
| default=1, | |
| metadata={ | |
| "help": "crop convolutional feature extractor output such that the sequence length is divisible by multiple" | |
| }, | |
| ) | |
| # Conformer | |
| depthwise_conv_kernel_size: int = field( | |
| default=31, | |
| metadata={ | |
| "help": "depthwise-conv-kernel-size for convolution in conformer layer" | |
| }, | |
| ) | |
| attn_type: str = field( | |
| default="", | |
| metadata={"help": "if espnet use ESPNET MHA"}, | |
| ) | |
| pos_enc_type: str = field( | |
| default="abs", | |
| metadata={"help": "Positional encoding type to use in conformer"}, | |
| ) | |
| fp16: bool = field(default=False, metadata={"help": "If fp16 is being used"}) | |
| # Adapter num | |
| adp_num: int = field( | |
| default=-1 | |
| ) | |
| adp_dim: int = field( | |
| default=64 | |
| ) | |
| adp_act_fn: str = field( | |
| default="relu" | |
| ) | |
| adp_trf_idx: str = field( | |
| default="all", | |
| ) | |
| class Wav2Vec2Model(BaseFairseqModel): | |
| def __init__(self, cfg: Wav2Vec2Config): | |
| super().__init__() | |
| self.cfg = cfg | |
| feature_enc_layers = eval(cfg.conv_feature_layers) | |
| self.embed = feature_enc_layers[-1][0] | |
| self.feature_extractor = ConvFeatureExtractionModel( | |
| conv_layers=feature_enc_layers, | |
| dropout=0.0, | |
| mode=cfg.extractor_mode, | |
| conv_bias=cfg.conv_bias, | |
| ) | |
| self.post_extract_proj = ( | |
| nn.Linear(self.embed, cfg.encoder_embed_dim) | |
| if self.embed != cfg.encoder_embed_dim and not cfg.quantize_input | |
| else None | |
| ) | |
| self.crop_seq_to_multiple = cfg.crop_seq_to_multiple | |
| self.mask_prob = cfg.mask_prob | |
| self.mask_selection = cfg.mask_selection | |
| self.mask_other = cfg.mask_other | |
| self.mask_length = cfg.mask_length | |
| self.no_mask_overlap = cfg.no_mask_overlap | |
| self.mask_min_space = cfg.mask_min_space | |
| self.mask_channel_prob = cfg.mask_channel_prob | |
| self.mask_channel_before = cfg.mask_channel_before | |
| self.mask_channel_selection = cfg.mask_channel_selection | |
| self.mask_channel_other = cfg.mask_channel_other | |
| self.mask_channel_length = cfg.mask_channel_length | |
| self.no_mask_channel_overlap = cfg.no_mask_channel_overlap | |
| self.mask_channel_min_space = cfg.mask_channel_min_space | |
| self.dropout_input = nn.Dropout(cfg.dropout_input) | |
| self.dropout_features = nn.Dropout(cfg.dropout_features) | |
| self.feature_grad_mult = cfg.feature_grad_mult | |
| self.quantizer = None | |
| self.input_quantizer = None | |
| self.n_negatives = cfg.num_negatives | |
| self.cross_sample_negatives = cfg.cross_sample_negatives | |
| self.codebook_negatives = cfg.codebook_negatives | |
| self.negatives_from_everywhere = cfg.negatives_from_everywhere | |
| self.logit_temp = cfg.logit_temp | |
| final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim | |
| if cfg.quantize_targets: | |
| vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim | |
| self.quantizer = GumbelVectorQuantizer( | |
| dim=self.embed, | |
| num_vars=cfg.latent_vars, | |
| temp=cfg.latent_temp, | |
| groups=cfg.latent_groups, | |
| combine_groups=False, | |
| vq_dim=vq_dim, | |
| time_first=True, | |
| weight_proj_depth=cfg.quantizer_depth, | |
| weight_proj_factor=cfg.quantizer_factor, | |
| ) | |
| self.project_q = nn.Linear(vq_dim, final_dim) | |
| else: | |
| self.project_q = nn.Linear(self.embed, final_dim) | |
| if cfg.quantize_input: | |
| if cfg.same_quantizer and self.quantizer is not None: | |
| vq_dim = final_dim | |
| self.input_quantizer = self.quantizer | |
| else: | |
| vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim | |
| self.input_quantizer = GumbelVectorQuantizer( | |
| dim=self.embed, | |
| num_vars=cfg.latent_vars, | |
| temp=cfg.latent_temp, | |
| groups=cfg.latent_groups, | |
| combine_groups=False, | |
| vq_dim=vq_dim, | |
| time_first=True, | |
| weight_proj_depth=cfg.quantizer_depth, | |
| weight_proj_factor=cfg.quantizer_factor, | |
| ) | |
| self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim) | |
| self.mask_emb = nn.Parameter( | |
| torch.FloatTensor(cfg.encoder_embed_dim).uniform_() | |
| ) | |
| encoder_cls = TransformerEncoder | |
| if cfg.layer_type == "conformer" and cfg.pos_enc_type in ["rel_pos", "rope"]: | |
| encoder_cls = ConformerEncoder | |
| self.encoder = encoder_cls(cfg) | |
| self.layer_norm = LayerNorm(self.embed) | |
| self.target_glu = None | |
| if cfg.target_glu: | |
| self.target_glu = nn.Sequential( | |
| nn.Linear(final_dim, final_dim * 2), nn.GLU() | |
| ) | |
| self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) | |
| def upgrade_state_dict_named(self, state_dict, name): | |
| super().upgrade_state_dict_named(state_dict, name) | |
| """Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
| return state_dict | |
| def build_model(cls, cfg: Wav2Vec2Config, task=None): | |
| """Build a new model instance.""" | |
| return cls(cfg) | |
| def apply_mask( | |
| self, | |
| x, | |
| padding_mask, | |
| mask_indices=None, | |
| mask_channel_indices=None, | |
| ): | |
| B, T, C = x.shape | |
| if self.mask_channel_prob > 0 and self.mask_channel_before: | |
| mask_channel_indices = compute_mask_indices( | |
| (B, C), | |
| None, | |
| self.mask_channel_prob, | |
| self.mask_channel_length, | |
| self.mask_channel_selection, | |
| self.mask_channel_other, | |
| no_overlap=self.no_mask_channel_overlap, | |
| min_space=self.mask_channel_min_space, | |
| ) | |
| mask_channel_indices = ( | |
| torch.from_numpy(mask_channel_indices) | |
| .to(x.device) | |
| .unsqueeze(1) | |
| .expand(-1, T, -1) | |
| ) | |
| x[mask_channel_indices] = 0 | |
| if self.mask_prob > 0: | |
| if mask_indices is None: | |
| mask_indices = compute_mask_indices( | |
| (B, T), | |
| padding_mask, | |
| self.mask_prob, | |
| self.mask_length, | |
| self.mask_selection, | |
| self.mask_other, | |
| min_masks=2, | |
| no_overlap=self.no_mask_overlap, | |
| min_space=self.mask_min_space, | |
| require_same_masks=self.cfg.require_same_masks, | |
| mask_dropout=self.cfg.mask_dropout, | |
| ) | |
| mask_indices = torch.from_numpy(mask_indices).to(x.device) | |
| x = index_put(x, mask_indices, self.mask_emb) | |
| else: | |
| mask_indices = None | |
| if self.mask_channel_prob > 0 and not self.mask_channel_before: | |
| if mask_channel_indices is None: | |
| mask_channel_indices = compute_mask_indices( | |
| (B, C), | |
| None, | |
| self.mask_channel_prob, | |
| self.mask_channel_length, | |
| self.mask_channel_selection, | |
| self.mask_channel_other, | |
| no_overlap=self.no_mask_channel_overlap, | |
| min_space=self.mask_channel_min_space, | |
| ) | |
| mask_channel_indices = ( | |
| torch.from_numpy(mask_channel_indices) | |
| .to(x.device) | |
| .unsqueeze(1) | |
| .expand(-1, T, -1) | |
| ) | |
| x = index_put(x, mask_channel_indices, 0) | |
| return x, mask_indices | |
| def sample_negatives(self, y, num, padding_count=None): | |
| if self.n_negatives == 0 and self.cross_sample_negatives == 0: | |
| return y.new(0) | |
| bsz, tsz, fsz = y.shape | |
| y = y.view(-1, fsz) # BTC => (BxT)C | |
| # FIXME: what happens if padding_count is specified? | |
| cross_high = tsz * bsz | |
| high = tsz - (padding_count or 0) | |
| with torch.no_grad(): | |
| assert high > 1, f"{bsz,tsz,fsz}" | |
| if self.n_negatives > 0: | |
| tszs = ( | |
| buffered_arange(num) | |
| .unsqueeze(-1) | |
| .expand(-1, self.n_negatives) | |
| .flatten() | |
| ) | |
| neg_idxs = torch.randint( | |
| low=0, high=high - 1, size=(bsz, self.n_negatives * num) | |
| ) | |
| neg_idxs[neg_idxs >= tszs] += 1 | |
| if self.cross_sample_negatives > 0: | |
| tszs = ( | |
| buffered_arange(num) | |
| .unsqueeze(-1) | |
| .expand(-1, self.cross_sample_negatives) | |
| .flatten() | |
| ) | |
| cross_neg_idxs = torch.randint( | |
| low=0, | |
| high=cross_high - 1, | |
| size=(bsz, self.cross_sample_negatives * num), | |
| ) | |
| cross_neg_idxs[cross_neg_idxs >= tszs] += 1 | |
| if self.n_negatives > 0: | |
| neg_idxs = neg_idxs + (torch.arange(bsz).unsqueeze(1) * high) | |
| else: | |
| neg_idxs = cross_neg_idxs | |
| if self.cross_sample_negatives > 0 and self.n_negatives > 0: | |
| neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1) | |
| negs = y[neg_idxs.view(-1)] | |
| negs = negs.view( | |
| bsz, num, self.n_negatives + self.cross_sample_negatives, fsz | |
| ).permute( | |
| 2, 0, 1, 3 | |
| ) # to NxBxTxC | |
| return negs, neg_idxs | |
| def compute_preds(self, x, y, negatives): | |
| neg_is_pos = (y == negatives).all(-1) | |
| y = y.unsqueeze(0) | |
| targets = torch.cat([y, negatives], dim=0) | |
| logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1) | |
| logits = logits / self.logit_temp | |
| logits = logits.type_as(x) | |
| if is_xla_tensor(logits) or neg_is_pos.any(): | |
| if not hasattr(self, "_inftensor"): | |
| fillval = -float(2**30) | |
| self._inftensor = ( | |
| torch.tensor(fillval).to(x.device) | |
| if is_xla_tensor(logits) | |
| else float("-inf") | |
| ) | |
| logits[1:] = index_put(logits[1:], neg_is_pos, self._inftensor) | |
| return logits | |
| def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): | |
| """ | |
| Computes the output length of the convolutional layers | |
| """ | |
| def _conv_out_length(input_length, kernel_size, stride): | |
| return torch.floor((input_length - kernel_size) / stride + 1) | |
| conv_cfg_list = eval(self.cfg.conv_feature_layers) | |
| for i in range(len(conv_cfg_list)): | |
| input_lengths = _conv_out_length( | |
| input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2] | |
| ) | |
| return input_lengths.to(torch.long) | |
| def forward( | |
| self, | |
| source, | |
| padding_mask=None, | |
| mask=True, | |
| features_only=False, | |
| layer=None, | |
| mask_indices=None, | |
| mask_channel_indices=None, | |
| padding_count=None, | |
| corpus_key=None, | |
| ): | |
| if self.feature_grad_mult > 0: | |
| features = self.feature_extractor(source) | |
| if self.feature_grad_mult != 1.0: | |
| features = GradMultiply.apply(features, self.feature_grad_mult) | |
| else: | |
| with torch.no_grad(): | |
| features = self.feature_extractor(source) | |
| features_pen = features.float().pow(2).mean() | |
| features = features.transpose(1, 2) | |
| features = self.layer_norm(features) | |
| unmasked_features = features.clone() | |
| if padding_mask is not None and padding_mask.any(): | |
| input_lengths = (1 - padding_mask.long()).sum(-1) | |
| # apply conv formula to get real output_lengths | |
| output_lengths = self._get_feat_extract_output_lengths(input_lengths) | |
| padding_mask = torch.zeros( | |
| features.shape[:2], dtype=features.dtype, device=features.device | |
| ) | |
| # these two operations makes sure that all values | |
| # before the output lengths indices are attended to | |
| padding_mask[ | |
| ( | |
| torch.arange(padding_mask.shape[0], device=padding_mask.device), | |
| output_lengths - 1, | |
| ) | |
| ] = 1 | |
| padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool() | |
| else: | |
| padding_mask = None | |
| time_steps_to_drop = features.size(1) % self.crop_seq_to_multiple | |
| if time_steps_to_drop != 0: | |
| features = features[:, :-time_steps_to_drop] | |
| unmasked_features = unmasked_features[:, :-time_steps_to_drop] | |
| if padding_mask is not None: | |
| padding_mask = padding_mask[:, :-time_steps_to_drop] | |
| if self.post_extract_proj is not None: | |
| features = self.post_extract_proj(features) | |
| features = self.dropout_input(features) | |
| unmasked_features = self.dropout_features(unmasked_features) | |
| num_vars = None | |
| code_ppl = None | |
| prob_ppl = None | |
| curr_temp = None | |
| if self.input_quantizer: | |
| q = self.input_quantizer(features, produce_targets=False) | |
| features = q["x"] | |
| num_vars = q["num_vars"] | |
| code_ppl = q["code_perplexity"] | |
| prob_ppl = q["prob_perplexity"] | |
| curr_temp = q["temp"] | |
| features = self.project_inp(features) | |
| if mask: | |
| x, mask_indices = self.apply_mask( | |
| features, | |
| padding_mask, | |
| mask_indices=mask_indices, | |
| mask_channel_indices=mask_channel_indices, | |
| ) | |
| if not is_xla_tensor(x) and mask_indices is not None: | |
| # tpu-comment: reducing the size in a dynamic way causes | |
| # too many recompilations on xla. | |
| y = unmasked_features[mask_indices].view( | |
| unmasked_features.size(0), -1, unmasked_features.size(-1) | |
| ) | |
| else: | |
| y = unmasked_features | |
| else: | |
| x = features | |
| y = unmasked_features | |
| mask_indices = None | |
| x, layer_results = self.encoder( | |
| x, padding_mask=padding_mask, layer=layer, corpus_key=corpus_key | |
| ) | |
| if features_only: | |
| return { | |
| "x": x, | |
| "padding_mask": padding_mask, | |
| "features": unmasked_features, | |
| "layer_results": layer_results, | |
| } | |
| if self.quantizer: | |
| if self.negatives_from_everywhere: | |
| q = self.quantizer(unmasked_features, produce_targets=False) | |
| y = q["x"] | |
| num_vars = q["num_vars"] | |
| code_ppl = q["code_perplexity"] | |
| prob_ppl = q["prob_perplexity"] | |
| curr_temp = q["temp"] | |
| y = self.project_q(y) | |
| negs, _ = self.sample_negatives( | |
| y, | |
| mask_indices[0].sum(), | |
| padding_count=padding_count, | |
| ) | |
| y = y[mask_indices].view(y.size(0), -1, y.size(-1)) | |
| else: | |
| q = self.quantizer(y, produce_targets=False) | |
| y = q["x"] | |
| num_vars = q["num_vars"] | |
| code_ppl = q["code_perplexity"] | |
| prob_ppl = q["prob_perplexity"] | |
| curr_temp = q["temp"] | |
| y = self.project_q(y) | |
| negs, _ = self.sample_negatives( | |
| y, | |
| y.size(1), | |
| padding_count=padding_count, | |
| ) | |
| if self.codebook_negatives > 0: | |
| cb_negs = self.quantizer.sample_from_codebook( | |
| y.size(0) * y.size(1), self.codebook_negatives | |
| ) | |
| cb_negs = cb_negs.view( | |
| self.codebook_negatives, y.size(0), y.size(1), -1 | |
| ) # order doesnt matter | |
| cb_negs = self.project_q(cb_negs) | |
| negs = torch.cat([negs, cb_negs], dim=0) | |
| else: | |
| y = self.project_q(y) | |
| if self.negatives_from_everywhere: | |
| negs, _ = self.sample_negatives( | |
| unmasked_features, | |
| y.size(1), | |
| padding_count=padding_count, | |
| ) | |
| negs = self.project_q(negs) | |
| else: | |
| negs, _ = self.sample_negatives( | |
| y, | |
| y.size(1), | |
| padding_count=padding_count, | |
| ) | |
| if not is_xla_tensor(x): | |
| # tpu-comment: reducing the size in a dynamic way causes | |
| # too many recompilations on xla. | |
| x = x[mask_indices].view(x.size(0), -1, x.size(-1)) | |
| if self.target_glu: | |
| y = self.target_glu(y) | |
| negs = self.target_glu(negs) | |
| x = self.final_proj(x) | |
| x = self.compute_preds(x, y, negs) | |
| result = { | |
| "x": x, | |
| "padding_mask": padding_mask, | |
| "features_pen": features_pen, | |
| } | |
| if prob_ppl is not None: | |
| result["prob_perplexity"] = prob_ppl | |
| result["code_perplexity"] = code_ppl | |
| result["num_vars"] = num_vars | |
| result["temp"] = curr_temp | |
| return result | |
| def quantize(self, x): | |
| assert self.quantizer is not None | |
| x = self.feature_extractor(x) | |
| x = x.transpose(1, 2) | |
| x = self.layer_norm(x) | |
| return self.quantizer.forward_idx(x) | |
| def extract_features( | |
| self, source, padding_mask, mask=False, layer=None, corpus_key=None | |
| ): | |
| res = self.forward( | |
| source, | |
| padding_mask, | |
| mask=mask, | |
| features_only=True, | |
| layer=layer, | |
| corpus_key=corpus_key, | |
| ) | |
| return res | |
| def get_logits(self, net_output): | |
| logits = net_output["x"] | |
| logits = logits.transpose(0, 2) | |
| logits = logits.reshape(-1, logits.size(-1)) | |
| return logits | |
| def get_targets(self, sample, net_output, expand_steps=True): | |
| x = net_output["x"] | |
| return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long) | |
| def get_extra_losses(self, net_output): | |
| pen = [] | |
| if "prob_perplexity" in net_output: | |
| pen.append( | |
| (net_output["num_vars"] - net_output["prob_perplexity"]) | |
| / net_output["num_vars"] | |
| ) | |
| if "features_pen" in net_output: | |
| pen.append(net_output["features_pen"]) | |
| return pen | |
| def remove_pretraining_modules(self, last_layer=None): | |
| self.quantizer = None | |
| self.project_q = None | |
| self.target_glu = None | |
| self.final_proj = None | |
| if last_layer is not None: | |
| self.encoder.layers = nn.ModuleList( | |
| l for i, l in enumerate(self.encoder.layers) if i <= last_layer | |
| ) | |
| class ConvFeatureExtractionModel(nn.Module): | |
| def __init__( | |
| self, | |
| conv_layers: List[Tuple[int, int, int]], | |
| dropout: float = 0.0, | |
| mode: str = "default", | |
| conv_bias: bool = False, | |
| ): | |
| super().__init__() | |
| assert mode in {"default", "layer_norm"} | |
| def block( | |
| n_in, | |
| n_out, | |
| k, | |
| stride, | |
| is_layer_norm=False, | |
| is_group_norm=False, | |
| conv_bias=False, | |
| ): | |
| def make_conv(): | |
| conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) | |
| nn.init.kaiming_normal_(conv.weight) | |
| return conv | |
| assert ( | |
| is_layer_norm and is_group_norm | |
| ) == False, "layer norm and group norm are exclusive" | |
| if is_layer_norm: | |
| return nn.Sequential( | |
| make_conv(), | |
| nn.Dropout(p=dropout), | |
| nn.Sequential( | |
| TransposeLast(), | |
| Fp32LayerNorm(dim, elementwise_affine=True), | |
| TransposeLast(), | |
| ), | |
| nn.GELU(), | |
| ) | |
| elif is_group_norm: | |
| return nn.Sequential( | |
| make_conv(), | |
| nn.Dropout(p=dropout), | |
| Fp32GroupNorm(dim, dim, affine=True), | |
| nn.GELU(), | |
| ) | |
| else: | |
| return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) | |
| in_d = 1 | |
| self.conv_layers = nn.ModuleList() | |
| for i, cl in enumerate(conv_layers): | |
| assert len(cl) == 3, "invalid conv definition: " + str(cl) | |
| (dim, k, stride) = cl | |
| self.conv_layers.append( | |
| block( | |
| in_d, | |
| dim, | |
| k, | |
| stride, | |
| is_layer_norm=mode == "layer_norm", | |
| is_group_norm=mode == "default" and i == 0, | |
| conv_bias=conv_bias, | |
| ) | |
| ) | |
| in_d = dim | |
| def forward(self, x): | |
| # BxT -> BxCxT | |
| x = x.unsqueeze(1) | |
| for conv in self.conv_layers: | |
| x = conv(x) | |
| return x | |
| def make_conv_pos(e, k, g, is_batch_norm=False): | |
| pos_conv = nn.Conv1d( | |
| e, | |
| e, | |
| kernel_size=k, | |
| padding=k // 2, | |
| groups=g, | |
| ) | |
| dropout = 0 | |
| std = math.sqrt((4 * (1.0 - dropout)) / (k * e)) | |
| nn.init.normal_(pos_conv.weight, mean=0, std=std) | |
| nn.init.constant_(pos_conv.bias, 0) | |
| if not is_batch_norm: | |
| pos_conv = nn.utils.weight_norm(pos_conv, name="weight", dim=2) | |
| pos_conv = nn.Sequential(pos_conv, SamePad(k), nn.GELU()) | |
| else: | |
| batch_norm = nn.BatchNorm1d(e) | |
| pos_conv = nn.Sequential(batch_norm, pos_conv, SamePad(k), nn.GELU()) | |
| return pos_conv | |
| class TransformerEncoder(nn.Module): | |
| def build_encoder_layer(self, args: Wav2Vec2Config, **kwargs): | |
| if args.layer_type == "transformer": | |
| layer = TransformerSentenceEncoderLayer( | |
| embedding_dim=self.embedding_dim, | |
| ffn_embedding_dim=args.encoder_ffn_embed_dim, | |
| num_attention_heads=args.encoder_attention_heads, | |
| dropout=self.dropout, | |
| attention_dropout=args.attention_dropout, | |
| activation_dropout=args.activation_dropout, | |
| activation_fn=args.activation_fn, | |
| layer_norm_first=args.layer_norm_first, | |
| ) | |
| elif args.layer_type == "conformer": | |
| layer = ConformerWav2Vec2EncoderLayer( | |
| embed_dim=self.embedding_dim, | |
| ffn_embed_dim=args.encoder_ffn_embed_dim, | |
| attention_heads=args.encoder_attention_heads, | |
| dropout=args.dropout, | |
| depthwise_conv_kernel_size=args.depthwise_conv_kernel_size, | |
| activation_fn="swish", | |
| attn_type=args.attn_type, | |
| use_fp16=args.fp16, | |
| pos_enc_type="abs", | |
| ) | |
| elif args.layer_type == "trf_adp": | |
| use_adp = False | |
| if args.adp_trf_idx == "all": | |
| use_adp = True | |
| else: | |
| adp_trf_idx = list(range(*[int(g) for g in args.adp_trf_idx.split(":")])) | |
| if kwargs.get("layer_idx", None) in adp_trf_idx: | |
| use_adp = True | |
| if use_adp: | |
| layer = TransformerSentenceEncoderWithAdapterLayer( | |
| embedding_dim=self.embedding_dim, | |
| ffn_embedding_dim=args.encoder_ffn_embed_dim, | |
| num_attention_heads=args.encoder_attention_heads, | |
| dropout=self.dropout, | |
| attention_dropout=args.attention_dropout, | |
| activation_dropout=args.activation_dropout, | |
| activation_fn=args.activation_fn, | |
| layer_norm_first=args.layer_norm_first, | |
| adapter_num=args.adp_num, | |
| adapter_dim=args.adp_dim, | |
| adapter_act_fn=args.adp_act_fn, | |
| ) | |
| else: | |
| layer = TransformerSentenceEncoderLayer( | |
| embedding_dim=self.embedding_dim, | |
| ffn_embedding_dim=args.encoder_ffn_embed_dim, | |
| num_attention_heads=args.encoder_attention_heads, | |
| dropout=self.dropout, | |
| attention_dropout=args.attention_dropout, | |
| activation_dropout=args.activation_dropout, | |
| activation_fn=args.activation_fn, | |
| layer_norm_first=args.layer_norm_first, | |
| ) | |
| layer = fsdp_wrap(layer) | |
| if args.checkpoint_activations: | |
| layer = checkpoint_wrapper(layer) | |
| return layer | |
| def __init__(self, args: Wav2Vec2Config): | |
| super().__init__() | |
| self.dropout = args.dropout | |
| self.embedding_dim = args.encoder_embed_dim | |
| self.required_seq_len_multiple = args.required_seq_len_multiple | |
| pos_conv_depth = getattr(args, "pos_conv_depth", 1) | |
| if pos_conv_depth > 1: | |
| num_layers = args.pos_conv_depth | |
| k = max(3, args.conv_pos // num_layers) | |
| def make_conv_block(e, k, g, l): | |
| return nn.Sequential( | |
| *[ | |
| nn.Sequential( | |
| nn.Conv1d( | |
| e, | |
| e, | |
| kernel_size=k, | |
| padding=k // 2, | |
| groups=g, | |
| ), | |
| SamePad(k), | |
| TransposeLast(), | |
| LayerNorm(e, elementwise_affine=False), | |
| TransposeLast(), | |
| nn.GELU(), | |
| ) | |
| for _ in range(l) | |
| ] | |
| ) | |
| self.pos_conv = make_conv_block( | |
| self.embedding_dim, k, args.conv_pos_groups, num_layers | |
| ) | |
| else: | |
| self.pos_conv = make_conv_pos( | |
| self.embedding_dim, | |
| args.conv_pos, | |
| args.conv_pos_groups, | |
| is_batch_norm=args.conv_pos_batch_norm | |
| if hasattr(args, "conv_pos_batch_norm") | |
| else False, | |
| ) | |
| self.layers = nn.ModuleList( | |
| [self.build_encoder_layer(args, layer_idx=ii) for ii in range(args.encoder_layers)] | |
| ) | |
| self.layer_norm_first = args.layer_norm_first | |
| self.layer_norm = LayerNorm(self.embedding_dim) | |
| self.layerdrop = args.encoder_layerdrop | |
| self.apply(init_bert_params) | |
| def forward(self, x, padding_mask=None, layer=None, corpus_key=None): | |
| x, layer_results = self.extract_features( | |
| x, padding_mask, layer, corpus_key=corpus_key | |
| ) | |
| if self.layer_norm_first and layer is None: | |
| x = self.layer_norm(x) | |
| return x, layer_results | |
| def extract_features( | |
| self, | |
| x, | |
| padding_mask=None, | |
| tgt_layer=None, | |
| min_layer=0, | |
| corpus_key=None, | |
| ): | |
| if padding_mask is not None: | |
| x = index_put(x, padding_mask, 0) | |
| x_conv = self.pos_conv(x.transpose(1, 2)) | |
| x_conv = x_conv.transpose(1, 2) | |
| x = x + x_conv | |
| if not self.layer_norm_first: | |
| x = self.layer_norm(x) | |
| # pad to the sequence length dimension | |
| x, pad_length = pad_to_multiple( | |
| x, self.required_seq_len_multiple, dim=-2, value=0 | |
| ) | |
| if pad_length > 0 and padding_mask is None: | |
| padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) | |
| padding_mask[:, -pad_length:] = True | |
| else: | |
| padding_mask, _ = pad_to_multiple( | |
| padding_mask, self.required_seq_len_multiple, dim=-1, value=True | |
| ) | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| # B x T x C -> T x B x C | |
| x = x.transpose(0, 1) | |
| layer_results = [] | |
| r = None | |
| for i, layer in enumerate(self.layers): | |
| dropout_probability = np.random.random() if self.layerdrop > 0 else 1 | |
| if not self.training or (dropout_probability > self.layerdrop): | |
| layer_check = layer | |
| if isinstance(layer, FullyShardedDataParallel): | |
| layer_check = layer.unwrapped_module | |
| if (corpus_key is None) or ( | |
| not isinstance(layer_check, ( | |
| TransformerSentenceEncoderWithAdapterLayer, | |
| ) | |
| ) | |
| ): | |
| x, (z, lr) = layer( | |
| x, self_attn_padding_mask=padding_mask, need_weights=False | |
| ) | |
| else: | |
| x, (z, lr) = layer( | |
| x, | |
| self_attn_padding_mask=padding_mask, | |
| need_weights=False, | |
| corpus_key=corpus_key, | |
| ) | |
| if i >= min_layer: | |
| layer_results.append((x, z, lr)) | |
| if i == tgt_layer: | |
| r = x | |
| break | |
| if r is not None: | |
| x = r | |
| # T x B x C -> B x T x C | |
| x = x.transpose(0, 1) | |
| # undo paddding | |
| if pad_length > 0: | |
| x = x[:, :-pad_length] | |
| def undo_pad(a, b, c): | |
| return ( | |
| a[:-pad_length], | |
| b[:-pad_length] if b is not None else b, | |
| c[:-pad_length], | |
| ) | |
| layer_results = [undo_pad(*u) for u in layer_results] | |
| return x, layer_results | |
| def max_positions(self): | |
| """Maximum output length supported by the encoder.""" | |
| return self.args.max_positions | |
| def upgrade_state_dict_named(self, state_dict, name): | |
| """Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
| return state_dict | |
| class ConformerEncoder(TransformerEncoder): | |
| def build_encoder_layer(self, args): | |
| layer = ConformerWav2Vec2EncoderLayer( | |
| embed_dim=self.embedding_dim, | |
| ffn_embed_dim=args.encoder_ffn_embed_dim, | |
| attention_heads=args.encoder_attention_heads, | |
| dropout=args.dropout, | |
| depthwise_conv_kernel_size=args.depthwise_conv_kernel_size, | |
| activation_fn="swish", | |
| attn_type=args.attn_type, | |
| pos_enc_type=args.pos_enc_type, | |
| use_fp16=args.fp16, # only used for rope | |
| ) | |
| layer = fsdp_wrap(layer) | |
| if args.checkpoint_activations: | |
| layer = checkpoint_wrapper(layer) | |
| return layer | |
| def __init__(self, args): | |
| super().__init__(args) | |
| self.args = args | |
| self.dropout = args.dropout | |
| self.embedding_dim = args.encoder_embed_dim | |
| self.pos_enc_type = args.pos_enc_type | |
| max_source_positions = self.max_positions() | |
| if self.pos_enc_type == "rel_pos": | |
| self.embed_positions = RelPositionalEncoding( | |
| max_source_positions, self.embedding_dim | |
| ) | |
| elif self.pos_enc_type == "rope": | |
| self.embed_positions = None | |
| else: | |
| raise Exception("Unsupported positional encoding type") | |
| self.layers = nn.ModuleList( | |
| [self.build_encoder_layer(args) for _ in range(args.encoder_layers)] | |
| ) | |
| self.layer_norm_first = args.layer_norm_first | |
| self.layer_norm = LayerNorm(self.embedding_dim) | |
| self.layerdrop = args.encoder_layerdrop | |
| self.apply(init_bert_params) | |
| def extract_features(self, x, padding_mask=None, tgt_layer=None): | |
| if padding_mask is not None: | |
| x = index_put(x, padding_mask, 0) | |
| # B x T x C -> T x B x C | |
| x = x.transpose(0, 1) | |
| # B X T X C here | |
| position_emb = None | |
| if self.pos_enc_type == "rel_pos": | |
| position_emb = self.embed_positions(x) | |
| if not self.layer_norm_first: | |
| x = self.layer_norm(x) | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| layer_results = [] | |
| r = None | |
| for i, layer in enumerate(self.layers): | |
| dropout_probability = np.random.random() | |
| if not self.training or (dropout_probability > self.layerdrop): | |
| x, z = layer( | |
| x, | |
| self_attn_padding_mask=padding_mask, | |
| need_weights=False, | |
| position_emb=position_emb, | |
| ) | |
| if tgt_layer is not None: | |
| layer_results.append((x, z)) | |
| if i == tgt_layer: | |
| r = x | |
| break | |
| if r is not None: | |
| x = r | |
| # T x B x C -> B x T x C | |
| x = x.transpose(0, 1) | |
| return x, layer_results | |
| class TransformerSentenceEncoderLayer(nn.Module): | |
| """ | |
| Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained | |
| models. | |
| """ | |
| def __init__( | |
| self, | |
| embedding_dim: float = 768, | |
| ffn_embedding_dim: float = 3072, | |
| num_attention_heads: int = 8, | |
| dropout: float = 0.1, | |
| attention_dropout: float = 0.1, | |
| activation_dropout: float = 0.1, | |
| activation_fn: str = "relu", | |
| layer_norm_first: bool = False, | |
| ) -> None: | |
| super().__init__() | |
| # Initialize parameters | |
| self.embedding_dim = embedding_dim | |
| self.dropout = dropout | |
| self.activation_dropout = activation_dropout | |
| # Initialize blocks | |
| self.activation_fn = utils.get_activation_fn(activation_fn) | |
| self.self_attn = MultiheadAttention( | |
| self.embedding_dim, | |
| num_attention_heads, | |
| dropout=attention_dropout, | |
| self_attention=True, | |
| ) | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(self.activation_dropout) | |
| self.dropout3 = nn.Dropout(dropout) | |
| self.layer_norm_first = layer_norm_first | |
| # layer norm associated with the self attention layer | |
| self.self_attn_layer_norm = LayerNorm(self.embedding_dim) | |
| self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) | |
| self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) | |
| # layer norm associated with the position wise feed-forward NN | |
| self.final_layer_norm = LayerNorm(self.embedding_dim) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| self_attn_mask: torch.Tensor = None, | |
| self_attn_padding_mask: torch.Tensor = None, | |
| need_weights: bool = False, | |
| att_args=None, | |
| ): | |
| """ | |
| LayerNorm is applied either before or after the self-attention/ffn | |
| modules similar to the original Transformer imlementation. | |
| """ | |
| residual = x | |
| if self.layer_norm_first: | |
| x = self.self_attn_layer_norm(x) | |
| x, attn = self.self_attn( | |
| query=x, | |
| key=x, | |
| value=x, | |
| key_padding_mask=self_attn_padding_mask, | |
| attn_mask=self_attn_mask, | |
| need_weights=False, | |
| ) | |
| x = self.dropout1(x) | |
| x = residual + x | |
| residual = x | |
| x = self.final_layer_norm(x) | |
| x = self.activation_fn(self.fc1(x)) | |
| x = self.dropout2(x) | |
| x = self.fc2(x) | |
| layer_result = x | |
| x = self.dropout3(x) | |
| x = residual + x | |
| else: | |
| x, attn = self.self_attn( | |
| query=x, | |
| key=x, | |
| value=x, | |
| key_padding_mask=self_attn_padding_mask, | |
| need_weights=False, | |
| ) | |
| x = self.dropout1(x) | |
| x = residual + x | |
| x = self.self_attn_layer_norm(x) | |
| residual = x | |
| x = self.activation_fn(self.fc1(x)) | |
| x = self.dropout2(x) | |
| x = self.fc2(x) | |
| layer_result = x | |
| x = self.dropout3(x) | |
| x = residual + x | |
| x = self.final_layer_norm(x) | |
| return x, (attn, layer_result) | |
| class AdapterFast(nn.Module): | |
| def __init__(self, adapter_num, input_dim, hidden_dim, act_fn): | |
| """ | |
| Implements adapter modules directly with 3D tensor weight as parameters | |
| and without using ModuleList orto speed up training throughput. | |
| """ | |
| super().__init__() | |
| self.adapter_num = adapter_num | |
| self.input_dim = input_dim | |
| self.hidden_dim = hidden_dim | |
| self.W_a = nn.Parameter(torch.empty(adapter_num, hidden_dim, input_dim)) | |
| self.W_b = nn.Parameter(torch.empty(adapter_num, input_dim, hidden_dim)) | |
| self.b_a = nn.Parameter(torch.empty(adapter_num, hidden_dim)) | |
| self.b_b = nn.Parameter(torch.empty(adapter_num, input_dim)) | |
| self.ln_W = nn.Parameter(torch.empty(adapter_num, input_dim)) | |
| self.ln_b = nn.Parameter(torch.empty(adapter_num, input_dim)) | |
| self.act_fn = nn.Identity() | |
| if act_fn == "relu": | |
| self.act_fn = nn.ReLU() | |
| elif act_fn == "gelu": | |
| self.act_fn = nn.GELU() | |
| elif act_fn == "selu": | |
| self.act_fn = nn.SELU() | |
| else: | |
| raise ValueError(f"unsupported {act_fn}") | |
| self.input_dim = input_dim | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| for ii in range(self.adapter_num): | |
| nn.init.kaiming_uniform_(self.W_a[ii], a=math.sqrt(5)) | |
| nn.init.kaiming_uniform_(self.W_b[ii], a=math.sqrt(5)) | |
| fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_a[ii]) | |
| bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 | |
| nn.init.uniform_(self.b_a[ii], -bound, bound) | |
| fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_b[ii]) | |
| bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 | |
| nn.init.uniform_(self.b_b[ii], -bound, bound) | |
| nn.init.ones_(self.ln_W) | |
| nn.init.zeros_(self.ln_b) | |
| def forward(self, x, adapter_id): | |
| ii = adapter_id | |
| h = x | |
| h = F.layer_norm(h, (self.input_dim, ), self.ln_W[ii], self.ln_b[ii]) | |
| h = F.linear(h, self.W_a[ii], self.b_a[ii]) | |
| h = self.act_fn(h) | |
| h = F.linear(h, self.W_b[ii], self.b_b[ii]) | |
| outputs = h | |
| return outputs | |
| def extra_repr(self): | |
| return ('adapter={}, input_dim={}, hidden_dim={}'.format(self.adapter_num, self.input_dim, self.hidden_dim)) | |
| class TransformerSentenceEncoderWithAdapterLayer(TransformerSentenceEncoderLayer): | |
| """ | |
| Implements a Transformer Encoder Layer with adapters used in BERT/XLM style pre-trained | |
| models. An adapter module is added along with vanilla Transformer module. | |
| """ | |
| def __init__( | |
| self, | |
| embedding_dim: float = 768, | |
| ffn_embedding_dim: float = 3072, | |
| num_attention_heads: int = 8, | |
| dropout: float = 0.1, | |
| attention_dropout: float = 0.1, | |
| activation_dropout: float = 0.1, | |
| activation_fn: str = "relu", | |
| layer_norm_first: bool = False, | |
| adapter_num=201, | |
| adapter_dim=64, | |
| adapter_act_fn="relu", | |
| ) -> None: | |
| super().__init__( | |
| embedding_dim=embedding_dim, | |
| ffn_embedding_dim=ffn_embedding_dim, | |
| num_attention_heads=num_attention_heads, | |
| dropout=dropout, | |
| attention_dropout=attention_dropout, | |
| activation_dropout=activation_dropout, | |
| activation_fn=activation_fn, | |
| layer_norm_first=layer_norm_first, | |
| ) | |
| self.adapter_num = adapter_num | |
| self.adapter_dim = adapter_dim | |
| self.adapter_layer = AdapterFast(adapter_num, self.embedding_dim, self.adapter_dim, adapter_act_fn) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| self_attn_mask: torch.Tensor = None, | |
| self_attn_padding_mask: torch.Tensor = None, | |
| need_weights: bool = False, | |
| att_args=None, | |
| corpus_key=None, | |
| ): | |
| x, (attn, layer_result) = super().forward( | |
| x=x, | |
| self_attn_mask=self_attn_mask, | |
| self_attn_padding_mask=self_attn_padding_mask, | |
| need_weights=need_weights, | |
| att_args=att_args, | |
| ) | |
| assert corpus_key is not None | |
| assert len(set(corpus_key)) == 1, f"corpus_key items are not same {corpus_key}" | |
| y = self.adapter_layer(x, corpus_key[0]) | |
| x = x + y | |
| return x, (attn, layer_result) | |