Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| import os | |
| import sys | |
| from typing import Dict, List, Optional | |
| import torch | |
| from fairseq.models import ( | |
| FairseqIncrementalDecoder, | |
| FairseqLanguageModel, | |
| register_model, | |
| register_model_architecture, | |
| ) | |
| logger = logging.getLogger(__name__) | |
| DEFAULT_MAX_TARGET_POSITIONS = 1024 | |
| class HuggingFaceGPT2LanguageModel(FairseqLanguageModel): | |
| def __init__(self, decoder): | |
| super().__init__(decoder) | |
| def add_args(parser): | |
| """Add model-specific arguments to the parser.""" | |
| # fmt: off | |
| parser.add_argument('--embed-dim', type=int, metavar='N', | |
| help='embedding dimension') | |
| parser.add_argument('--num-attention-heads', type=int, metavar='N', | |
| help='num attention heads') | |
| parser.add_argument('--num-layers', type=int, metavar='N', | |
| help='num layers') | |
| parser.add_argument('--dropout', type=float, metavar='D', | |
| help='dropout probability for all fully connected layers ' | |
| 'in the embeddings, encoder, and pooler') | |
| parser.add_argument('--attention-dropout', type=float, metavar='D', | |
| help='dropout probability for attention weights') | |
| # fmt: on | |
| def build_model(cls, args, task): | |
| """Build a new model instance.""" | |
| default_architecture(args) | |
| return cls(HuggingFaceGPT2Decoder(args, task)) | |
| class HuggingFaceGPT2Decoder(FairseqIncrementalDecoder): | |
| def __init__(self, args, task): | |
| try: | |
| from transformers import GPT2Config, GPT2LMHeadModel | |
| except ImportError: | |
| raise ImportError( | |
| "\n\nPlease install huggingface/transformers with:" | |
| "\n\n pip install transformers" | |
| ) | |
| super().__init__(task.target_dictionary) | |
| config = GPT2Config( | |
| vocab_size=len(task.target_dictionary), | |
| n_positions=args.max_target_positions + 1, | |
| n_ctx=args.max_target_positions, | |
| n_embd=args.embed_dim, | |
| n_layer=args.num_layers, | |
| n_head=args.num_attention_heads, | |
| resid_pdrop=args.dropout, | |
| embd_pdrop=args.dropout, | |
| attn_pdrop=args.attention_dropout, | |
| layer_norm_epsilon=1e-6, | |
| ) | |
| self.model = GPT2LMHeadModel(config) | |
| # set zero embedding for padding symbol | |
| self.pad_idx = task.target_dictionary.pad() | |
| self.model.transformer.wte.weight.data[self.pad_idx].zero_() | |
| self.model.transformer.wpe.weight.data[0].zero_() | |
| def forward( | |
| self, | |
| prev_output_tokens, | |
| src_lengths=None, | |
| incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, | |
| encoder_out=None, | |
| ): | |
| features = self.extract_features(prev_output_tokens, incremental_state) | |
| lm_logits = self.model.lm_head(features) | |
| return (lm_logits,) | |
| def extract_features( | |
| self, | |
| prev_output_tokens, | |
| incremental_state: Optional[Dict[str, List[torch.Tensor]]] = None, | |
| ): | |
| if incremental_state: | |
| past = self.get_incremental_state("past") | |
| else: | |
| past = None | |
| # don't attend to padding symbols | |
| attention_mask = prev_output_tokens.ne(self.pad_idx).int() | |
| # set position ids to exclude padding symbols | |
| position_ids = attention_mask * ( | |
| torch.arange(1, 1 + prev_output_tokens.size(1)) | |
| .to(prev_output_tokens) | |
| .repeat(prev_output_tokens.size(0), 1) | |
| ) | |
| outputs = self.model.transformer( | |
| input_ids=prev_output_tokens, | |
| past=past, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| ) | |
| last_hidden_states = outputs[0] | |
| if incremental_state: | |
| self.set_incremental_state(incremental_state, "past", outputs[1]) | |
| return last_hidden_states | |
| def max_positions(self): | |
| return self.model.config.n_positions - 1 | |
| def default_architecture(args): | |
| if getattr(args, "max_target_positions", None) is None: | |
| args.max_target_positions = getattr( | |
| args, "tokens_per_sample", DEFAULT_MAX_TARGET_POSITIONS | |
| ) | |
| args.embed_dim = getattr(args, "embed_dim", 768) | |
| args.num_attention_heads = getattr(args, "num_attention_heads", 12) | |
| args.num_layers = getattr(args, "num_layers", 12) | |
| args.dropout = getattr(args, "dropout", 0.1) | |
| args.attention_dropout = getattr(args, "attention_dropout", 0.1) | |
| def hf_gpt2_medium(args): | |
| args.embed_dim = getattr(args, "embed_dim", 1024) | |
| args.num_attention_heads = getattr(args, "num_attention_heads", 16) | |
| args.num_layers = getattr(args, "num_layers", 24) | |
| default_architecture(args) | |
| def hf_gpt2_large(args): | |
| args.embed_dim = getattr(args, "embed_dim", 1280) | |
| args.num_attention_heads = getattr(args, "num_attention_heads", 20) | |
| args.num_layers = getattr(args, "num_layers", 36) | |
| default_architecture(args) | |
| def hf_gpt2_xl(args): | |
| args.embed_dim = getattr(args, "embed_dim", 1600) | |
| args.num_attention_heads = getattr(args, "num_attention_heads", 25) | |
| args.num_layers = getattr(args, "num_layers", 48) | |
| default_architecture(args) | |