Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| """ | |
| A standalone module for aggregating metrics. | |
| Metrics can be logged from anywhere using the `log_*` functions defined | |
| in this module. The logged values will be aggregated dynamically based | |
| on the aggregation context in which the logging occurs. See the | |
| :func:`aggregate` context manager for more details. | |
| """ | |
| import contextlib | |
| import uuid | |
| from collections import defaultdict | |
| from typing import Callable, List, Optional | |
| from .meters import * | |
| # Aggregation contexts are considered "active" when inside the scope | |
| # created by the :func:`aggregate` context manager. | |
| _aggregators = OrderedDict() | |
| _active_aggregators = OrderedDict() | |
| _active_aggregators_cnt = defaultdict(lambda: 0) | |
| def reset() -> None: | |
| """Reset all metrics aggregators.""" | |
| _aggregators.clear() | |
| _active_aggregators.clear() | |
| _active_aggregators_cnt.clear() | |
| # The "default" aggregator observes all logged values. | |
| _aggregators["default"] = MetersDict() | |
| _active_aggregators["default"] = _aggregators["default"] | |
| _active_aggregators_cnt["default"] = 1 | |
| reset() | |
| def aggregate(name: Optional[str] = None, new_root: bool = False): | |
| """Context manager to aggregate metrics under a given name. | |
| Aggregations can be nested. If *new_root* is ``False``, then logged | |
| metrics will be recorded along the entire stack of nested | |
| aggregators, including a global "default" aggregator. If *new_root* | |
| is ``True``, then this aggregator will be the root of a new | |
| aggregation stack, thus bypassing any parent aggregators. | |
| Note that aggregation contexts are uniquely identified by their | |
| *name* (e.g., train, valid). Creating a context with an existing | |
| name will reuse the corresponding :class:`MetersDict` instance. | |
| If no name is given, then a temporary aggregator will be created. | |
| Usage:: | |
| with metrics.aggregate("train"): | |
| for step, batch in enumerate(epoch): | |
| with metrics.aggregate("train_inner") as agg: | |
| metrics.log_scalar("loss", get_loss(batch)) | |
| if step % log_interval == 0: | |
| print(agg.get_smoothed_value("loss")) | |
| agg.reset() | |
| print(metrics.get_smoothed_values("train")["loss"]) | |
| Args: | |
| name (str): name of the aggregation. Defaults to a | |
| random/temporary name if not given explicitly. | |
| new_root (bool): make this aggregation the root of a new | |
| aggregation stack. | |
| """ | |
| if name is None: | |
| # generate a temporary name | |
| name = str(uuid.uuid4()) | |
| assert name not in _aggregators | |
| agg = MetersDict() | |
| else: | |
| assert name != "default" | |
| agg = _aggregators.setdefault(name, MetersDict()) | |
| if new_root: | |
| backup_aggregators = _active_aggregators.copy() | |
| _active_aggregators.clear() | |
| backup_aggregators_cnt = _active_aggregators_cnt.copy() | |
| _active_aggregators_cnt.clear() | |
| _active_aggregators[name] = agg | |
| _active_aggregators_cnt[name] += 1 | |
| yield agg | |
| _active_aggregators_cnt[name] -= 1 | |
| if _active_aggregators_cnt[name] == 0 and name in _active_aggregators: | |
| del _active_aggregators[name] | |
| if new_root: | |
| _active_aggregators.clear() | |
| _active_aggregators.update(backup_aggregators) | |
| _active_aggregators_cnt.clear() | |
| _active_aggregators_cnt.update(backup_aggregators_cnt) | |
| def get_active_aggregators() -> List[MetersDict]: | |
| return list(_active_aggregators.values()) | |
| def log_scalar( | |
| key: str, | |
| value: float, | |
| weight: float = 1, | |
| priority: int = 10, | |
| round: Optional[int] = None, | |
| ): | |
| """Log a scalar value. | |
| Args: | |
| key (str): name of the field to log | |
| value (float): value to log | |
| weight (float): weight that this value contributes to the average. | |
| A weight of 0 will always log the latest value. | |
| priority (int): smaller values are logged earlier in the output | |
| round (Optional[int]): number of digits to round to when displaying | |
| """ | |
| for agg in get_active_aggregators(): | |
| if key not in agg: | |
| agg.add_meter(key, AverageMeter(round=round), priority) | |
| agg[key].update(value, weight) | |
| def log_scalar_sum( | |
| key: str, | |
| value: float, | |
| priority: int = 10, | |
| round: Optional[int] = None, | |
| ): | |
| """Log a scalar value that is summed for reporting. | |
| Args: | |
| key (str): name of the field to log | |
| value (float): value to log | |
| priority (int): smaller values are logged earlier in the output | |
| round (Optional[int]): number of digits to round to when displaying | |
| """ | |
| for agg in get_active_aggregators(): | |
| if key not in agg: | |
| agg.add_meter(key, SumMeter(round=round), priority) | |
| agg[key].update(value) | |
| def log_concat_tensor( | |
| key: str, | |
| value: torch.Tensor, | |
| priority: int = 10, | |
| dim: int = 0, | |
| ): | |
| """Log a scalar value that is summed for reporting. | |
| Args: | |
| key (str): name of the field to log | |
| value (float): value to log | |
| priority (int): smaller values are logged earlier in the output | |
| round (Optional[int]): number of digits to round to when displaying | |
| """ | |
| for agg in get_active_aggregators(): | |
| if key not in agg: | |
| agg.add_meter(key, ConcatTensorMeter(dim=dim), priority) | |
| agg[key].update(value) | |
| def log_derived(key: str, fn: Callable[[MetersDict], float], priority: int = 20): | |
| """Log a scalar value derived from other meters. | |
| Args: | |
| key (str): name of the field to log | |
| fn (Callable[[MetersDict], float]): function that takes a single | |
| argument *meters* and returns the derived value | |
| priority (int): smaller values are logged earlier in the output | |
| """ | |
| for agg in get_active_aggregators(): | |
| if key not in agg: | |
| agg.add_meter(key, MetersDict._DerivedMeter(fn), priority) | |
| def log_speed( | |
| key: str, | |
| value: float, | |
| priority: int = 30, | |
| round: Optional[int] = None, | |
| ): | |
| """Log the rate of some quantity per second. | |
| Args: | |
| key (str): name of the field to log | |
| value (float): value to log | |
| priority (int): smaller values are logged earlier in the output | |
| round (Optional[int]): number of digits to round to when displaying | |
| """ | |
| for agg in get_active_aggregators(): | |
| if key not in agg: | |
| agg.add_meter(key, TimeMeter(round=round), priority) | |
| agg[key].reset() # reset meter on the first call | |
| else: | |
| agg[key].update(value) | |
| def log_start_time(key: str, priority: int = 40, round: Optional[int] = None): | |
| """Log the duration of some event in seconds. | |
| The duration will be computed once :func:`log_stop_time` is called. | |
| Args: | |
| key (str): name of the field to log | |
| priority (int): smaller values are logged earlier in the output | |
| round (Optional[int]): number of digits to round to when displaying | |
| """ | |
| for agg in get_active_aggregators(): | |
| if key not in agg: | |
| agg.add_meter(key, StopwatchMeter(round=round), priority) | |
| agg[key].start() | |
| def log_stop_time(key: str, weight: float = 0.0, prehook=None): | |
| """Log the duration of some event in seconds. | |
| The duration will be computed since :func:`log_start_time` was called. | |
| Set weight > 0 to report the average time instead of the sum. | |
| Args: | |
| key (str): name of the field to log | |
| weight (float): weight that this time contributes to the average | |
| prehook (function, no arguments): will be called before the timer | |
| is stopped. For example, use prehook=torch.cuda.synchronize to | |
| make sure all gpu operations are done before timer is stopped. | |
| """ | |
| for agg in get_active_aggregators(): | |
| if key in agg: | |
| agg[key].stop(weight, prehook) | |
| def log_custom( | |
| new_meter_fn: Callable[[], Meter], | |
| key: str, | |
| *args, | |
| priority: int = 50, | |
| **kwargs, | |
| ): | |
| """Log using a custom Meter. | |
| Any extra *args* or *kwargs* will be passed through to the Meter's | |
| *update* method. | |
| Args: | |
| new_meter_fn (Callable[[], Meter]): function that returns a new | |
| Meter instance | |
| key (str): name of the field to log | |
| priority (int): smaller values are logged earlier in the output | |
| """ | |
| for agg in get_active_aggregators(): | |
| if key not in agg: | |
| agg.add_meter(key, new_meter_fn(), priority) | |
| agg[key].update(*args, **kwargs) | |
| def reset_meter(name: str, key: str) -> None: | |
| """Reset Meter instance aggregated under a given *name* and *key*.""" | |
| meter = get_meter(name, key) | |
| if meter is not None: | |
| meter.reset() | |
| def reset_meters(name: str) -> None: | |
| """Reset Meter instances aggregated under a given *name*.""" | |
| meters = get_meters(name) | |
| if meters is not None: | |
| meters.reset() | |
| def get_meter(name: str, key: str) -> Meter: | |
| """Get a single Meter instance aggregated under *name* and *key*. | |
| Returns: | |
| Meter or None if no metrics have been logged under *name* and *key*. | |
| """ | |
| if name not in _aggregators: | |
| return None | |
| return _aggregators[name].get(key, None) | |
| def get_meters(name: str) -> MetersDict: | |
| """Get Meter instances aggregated under a given *name*. | |
| Returns: | |
| MetersDict or None if no metrics have been logged under *name*. | |
| """ | |
| return _aggregators.get(name, None) | |
| def get_smoothed_value(name: str, key: str) -> float: | |
| """Get a single smoothed value. | |
| Raises: | |
| KeyError: if no metrics have been logged under *name* and *key*. | |
| """ | |
| return _aggregators[name].get_smoothed_value(key) | |
| def get_smoothed_values(name: str) -> Dict[str, float]: | |
| """Get smoothed values aggregated under a given *name*. | |
| Raises: | |
| KeyError: if no metrics have been logged under *name*. | |
| """ | |
| return _aggregators[name].get_smoothed_values() | |
| def state_dict(): | |
| return OrderedDict([(name, agg.state_dict()) for name, agg in _aggregators.items()]) | |
| def load_state_dict(state_dict): | |
| for name, agg_state in state_dict.items(): | |
| _aggregators[name] = MetersDict() | |
| _aggregators[name].load_state_dict(agg_state) | |
| def xla_metrics_report(): | |
| try: | |
| import torch_xla.debug.metrics as met | |
| print(met.metrics_report()) | |
| except ImportError: | |
| return | |