File size: 3,802 Bytes
4853fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import math
import torch
import torch.nn as nn
import torch.nn.functional as F


class Mish(nn.Module):
    def forward(self, x):
        return x * torch.tanh(F.softplus(x))


class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super(SinusoidalPosEmb, self).__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim-1)
        emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
        emb = x.unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class ResidualBlock(nn.Module):
    def __init__(self, encoder_hidden, residual_channels, dilation):
        super().__init__()
        self.dilated_conv = nn.Conv1d(
            residual_channels,
            2 * residual_channels,
            3,
            padding=dilation,
            dilation=dilation
        )
        self.diffusion_projection = nn.Linear(
            residual_channels, residual_channels
        )
        self.conditioner_projection = nn.Conv1d(
            encoder_hidden, 2 * residual_channels, 1
        )
        self.output_projection = nn.Conv1d(
            residual_channels, 2 * residual_channels, 1
        )

    def forward(self, x, conditioner, diffusion_step):
        diffusion_step = self.diffusion_projection(diffusion_step
                                                  ).unsqueeze(-1)
        conditioner = self.conditioner_projection(conditioner)
        y = x + diffusion_step

        y = self.dilated_conv(y) + conditioner

        gate, filter = torch.chunk(y, 2, dim=1)
        y = torch.sigmoid(gate) * torch.tanh(filter)

        y = self.output_projection(y)
        residual, skip = torch.chunk(y, 2, dim=1)
        return (x+residual) / math.sqrt(2.0), skip


class DiffSingerNet(nn.Module):
    def __init__(
        self,
        in_dims=128,
        residual_channels=256,
        encoder_hidden=256,
        dilation_cycle_length=4,
        residual_layers=20,
    ):
        super().__init__()

        # self.pe_scale = pe_scale

        self.input_projection = nn.Conv1d(in_dims, residual_channels, 1)
        self.time_pos_emb = SinusoidalPosEmb(residual_channels)
        dim = residual_channels
        self.mlp = nn.Sequential(
            nn.Linear(dim, dim * 4), Mish(), nn.Linear(dim * 4, dim)
        )
        self.residual_layers = nn.ModuleList([
            ResidualBlock(
                encoder_hidden, residual_channels,
                2**(i % dilation_cycle_length)
            ) for i in range(residual_layers)
        ])
        self.skip_projection = nn.Conv1d(
            residual_channels, residual_channels, 1
        )
        self.output_projection = nn.Conv1d(residual_channels, in_dims, 1)
        nn.init.zeros_(self.output_projection.weight)

    def forward(self, x, timesteps, context, x_mask=None, context_mask=None):
        # make it compatible with int time step during inference
        if timesteps.dim() == 0:
            timesteps = timesteps.expand(x.shape[0]
                                        ).to(x.device, dtype=torch.long)

        x = self.input_projection(x)  # x [B, residual_channel, T]

        x = F.relu(x)

        t = self.time_pos_emb(timesteps)
        t = self.mlp(t)

        cond = context

        skip = []
        for layer_id, layer in enumerate(self.residual_layers):
            x, skip_connection = layer(x, cond, t)
            skip.append(skip_connection)

        x = torch.sum(torch.stack(skip),
                      dim=0) / math.sqrt(len(self.residual_layers))
        x = self.skip_projection(x)
        x = F.relu(x)
        x = self.output_projection(x)  # [B, M, T]
        return x * x_mask.unsqueeze(1)