File size: 16,498 Bytes
85ba398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import logging
import os
from fairseq.data.multi_corpus_dataset import MultiCorpusDataset
import torch
import json

from argparse import Namespace
from dataclasses import dataclass, field
from typing import Optional, Any, OrderedDict

from fairseq.data import AddTargetDataset, Dictionary, encoders
from fairseq.tasks.audio_pretraining import AudioPretrainingTask, AudioPretrainingConfig
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.configs import GenerationConfig
from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel

from . import register_task
from .. import utils
from ..logging import metrics


logger = logging.getLogger(__name__)


class LabelEncoder(object):
    def __init__(self, dictionary):
        self.dictionary = dictionary

    def __call__(self, label):
        return self.dictionary.encode_line(
            label, append_eos=False, add_if_not_exist=False
        )


def label_len_fn(label):
    return len(label.split(" "))


@dataclass
class AudioFinetuningConfig(AudioPretrainingConfig):
    # Options for reporting WER metrics during validation. Only applicable to
    # Seq2Seq models during fine-tuning
    eval_wer: bool = field(
        default=False, metadata={"help": "compute WER for Seq2Seq models"}
    )
    eval_wer_config: GenerationConfig = field(
        default_factory=lambda: GenerationConfig(),
        metadata={"help": "beam search config for evaluating wer during training"},
    )
    eval_wer_tokenizer: Any = field(
        default=None,
        metadata={"help": "tokenizer config for evaluating wer during training"},
    )
    eval_wer_post_process: str = field(
        default="letter",
        metadata={
            "help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
        },
    )
    eval_bleu: bool = field(
        default=False, metadata={"help": "evaluation with BLEU scores"}
    )
    eval_bleu_detok: Optional[str] = field(
        default=None,
        metadata={
            "help": "detokenize before computing BLEU (e.g., 'moses'); "
            "required if using --eval-bleu; use 'space' to disable "
            "detokenization; see fairseq.data.encoders for other options"
        },
    )
    eval_bleu_detok_args: str = field(
        default="{}", metadata={"help": "args for building the tokenizer, if needed"}
    )
    eval_tokenized_bleu: bool = field(
        default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"}
    )
    eval_bleu_remove_bpe: Optional[str] = field(
        default=None, metadata={"help": "remove BPE before computing BLEU"}
    )
    eval_bleu_args: str = field(
        default="{}",
        metadata={
            "help": "generation args for BLUE scoring, e.g., "
            '\'{"beam": 4, "lenpen": 0.6}\''
        },
    )
    eval_bleu_print_samples: bool = field(
        default=False, metadata={"help": "print sample generations during validation"}
    )
    autoregressive: bool = field(
        default=False,
        metadata={
            "help": "required for autoregressive decoders (like seq2seq models); "
            "adds 'prev_output_tokens' to input and appends eos to target"
        },
    )
    rebuild_batches: bool = True
    target_dictionary: Optional[str] = field(
        default=None,
        metadata={
            "help": "override default dictionary location"
        }
    )

@register_task("audio_finetuning", dataclass=AudioFinetuningConfig)
class AudioFinetuningTask(AudioPretrainingTask):
    """ """

    cfg: AudioFinetuningConfig

    def __init__(
        self,
        cfg: AudioFinetuningConfig,
    ):
        super().__init__(cfg)
        self.blank_symbol = "<s>"

        self.state.add_factory("target_dictionary", self.load_target_dictionary)

    def load_target_dictionary(self):
        if self.cfg.labels:
            target_dictionary = self.cfg.data
            if self.cfg.target_dictionary:  # override dict
                target_dictionary = self.cfg.target_dictionary
            dict_path = os.path.join(target_dictionary, f"dict.{self.cfg.labels}.txt")
            logger.info('Using dict_path : {}'.format(dict_path))
            return Dictionary.load(dict_path)
        return None

    def load_dataset(
        self, split: str, task_cfg: AudioFinetuningConfig = None, **kwargs
    ):
        super().load_dataset(split, task_cfg, **kwargs)

        task_cfg = task_cfg or self.cfg
        assert task_cfg.labels is not None
        text_compression_level = getattr(
            TextCompressionLevel, str(self.cfg.text_compression_level)
        )
        data_path = self.cfg.data
        if task_cfg.multi_corpus_keys is None:
            label_path = os.path.join(data_path, f"{split}.{task_cfg.labels}")
            skipped_indices = getattr(self.datasets[split], "skipped_indices", set())
            text_compressor = TextCompressor(level=text_compression_level)
            with open(label_path, "r") as f:
                labels = [
                    text_compressor.compress(l)
                    for i, l in enumerate(f)
                    if i not in skipped_indices
                ]

            assert len(labels) == len(self.datasets[split]), (
                f"labels length ({len(labels)}) and dataset length "
                f"({len(self.datasets[split])}) do not match"
            )

            process_label = LabelEncoder(self.target_dictionary)

            self.datasets[split] = AddTargetDataset(
                self.datasets[split],
                labels,
                pad=self.target_dictionary.pad(),
                eos=self.target_dictionary.eos(),
                batch_targets=True,
                process_label=process_label,
                label_len_fn=label_len_fn,
                add_to_input=task_cfg.get("autoregressive", False),
                text_compression_level=text_compression_level,
            )
        else:

            target_dataset_map = OrderedDict()

            multi_corpus_keys = [k.strip() for k in task_cfg.multi_corpus_keys.split(",")]
            corpus_idx_map = {k: idx for idx, k in enumerate(multi_corpus_keys)}

            data_keys = [k.split(":") for k in split.split(",")]

            multi_corpus_sampling_weights = [float(val.strip()) for val in task_cfg.multi_corpus_sampling_weights.split(",")]
            data_weights = []
            for key, file_name in data_keys:
                k = key.strip()
                label_path = os.path.join(data_path, f"{file_name.strip()}.{task_cfg.labels}")
                skipped_indices = getattr(self.dataset_map[split][k], "skipped_indices", set())
                text_compressor = TextCompressor(level=text_compression_level)
                with open(label_path, "r") as f:
                    labels = [
                        text_compressor.compress(l)
                        for i, l in enumerate(f)
                        if i not in skipped_indices
                    ]

                assert len(labels) == len(self.dataset_map[split][k]), (
                    f"labels length ({len(labels)}) and dataset length "
                    f"({len(self.dataset_map[split][k])}) do not match"
                )

                process_label = LabelEncoder(self.target_dictionary)

                # TODO: Remove duplication of code from the if block above
                target_dataset_map[k] = AddTargetDataset(
                    self.dataset_map[split][k],
                    labels,
                    pad=self.target_dictionary.pad(),
                    eos=self.target_dictionary.eos(),
                    batch_targets=True,
                    process_label=process_label,
                    label_len_fn=label_len_fn,
                    add_to_input=task_cfg.get("autoregressive", False),
                    text_compression_level=text_compression_level,
                )

                data_weights.append(multi_corpus_sampling_weights[corpus_idx_map[k]])

            if len(target_dataset_map) == 1:
                self.datasets[split] = list(target_dataset_map.values())[0]
            else:
                self.datasets[split] = MultiCorpusDataset(target_dataset_map, distribution=data_weights, seed=0, sort_indices=True)

    @property
    def target_dictionary(self):
        """Return the :class:`~fairseq.data.Dictionary` for the language
        model."""
        return self.state.target_dictionary

    def valid_step(self, sample, model, criterion):
        loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
        if self.cfg.eval_wer and self.cfg.autoregressive:
            metrics = self._inference_with_wer(self.sequence_generator, sample, model)
            logging_output["_num_char_errors"] = metrics["num_char_errors"]
            logging_output["_num_chars"] = metrics["num_chars"]
            logging_output["_num_word_errors"] = metrics["num_word_errors"]
            logging_output["_num_words"] = metrics["num_words"]
        if self.cfg.eval_bleu and self.cfg.autoregressive:
            metrics = self._inference_with_bleu(self.sequence_generator, sample, model)
            logging_output["_bleu_sys_len"] = metrics.sys_len
            logging_output["_bleu_ref_len"] = metrics.ref_len
            # we split counts into separate entries so that they can be
            # summed efficiently across workers using fast-stat-sync
            assert len(metrics.counts) == 4
            for i in range(4):
                logging_output[f"_bleu_counts_{i}"] = metrics.counts[i]
                logging_output[f"_bleu_totals_{i}"] = metrics.totals[i]
        return loss, sample_size, logging_output

    def build_model(self, model_cfg: FairseqDataclass, from_checkpoint=False):
        model = super().build_model(model_cfg, from_checkpoint)

        if self.cfg.eval_wer and self.cfg.autoregressive:
            self.sequence_generator = self.build_generator(
                [model],
                self.cfg.eval_wer_config,
            )
            if self.cfg.eval_wer_tokenizer:
                self.tokenizer = encoders.build_tokenizer(self.cfg.eval_wer_tokenizer)
            else:
                self.tokenizer = None
        if self.cfg.eval_bleu and self.cfg.autoregressive:
            assert self.cfg.eval_bleu_detok is not None, (
                "--eval-bleu-detok is required if using --eval-bleu; "
                "try --eval-bleu-detok=moses (or --eval-bleu-detok=space "
                "to disable detokenization, e.g., when using sentencepiece)"
            )
            detok_args = json.loads(self.cfg.eval_bleu_detok_args)
            self.tokenizer = encoders.build_tokenizer(
                Namespace(tokenizer=self.cfg.eval_bleu_detok, **detok_args)
            )
            gen_args = json.loads(self.cfg.eval_bleu_args)
            gen_args = Namespace(**gen_args)
            self.sequence_generator = self.build_generator([model], gen_args)

        return model

    def _inference_with_wer(self, generator, sample, model):
        import editdistance

        def decode(toks):
            s = self.target_dictionary.string(
                toks.int().cpu(),
                self.cfg.eval_wer_post_process,
                escape_unk=True,
            )
            if self.tokenizer:
                s = self.tokenizer.decode(s)
            return s

        num_word_errors, num_char_errors = 0, 0
        num_chars, num_words = 0, 0
        gen_out = self.inference_step(generator, [model], sample, None)
        for i in range(len(gen_out)):
            hyp = decode(gen_out[i][0]["tokens"])
            ref = decode(
                utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
            )
            num_char_errors += editdistance.eval(hyp, ref)
            num_chars += len(ref)
            hyp_words = hyp.split()
            ref_words = ref.split()
            num_word_errors += editdistance.eval(hyp_words, ref_words)
            num_words += len(ref_words)

        return {
            "num_char_errors": num_char_errors,
            "num_chars": num_chars,
            "num_word_errors": num_word_errors,
            "num_words": num_words,
        }

    def _inference_with_bleu(self, generator, sample, model):
        import sacrebleu

        def decode(toks, is_ref):
            s = self.target_dictionary.string(
                toks.int().cpu(),
                self.cfg.eval_bleu_remove_bpe,
                # The default unknown string in fairseq is `<unk>`, but
                # this is tokenized by sacrebleu as `< unk >`, inflating
                # BLEU scores. Instead, we use a somewhat more verbose
                # alternative that is unlikely to appear in the real
                # reference, but doesn't get split into multiple tokens.
                unk_string=("UNKNOWNTOKENINREF" if is_ref else "UNKNOWNTOKENINHYP"),
            )
            if self.tokenizer:
                s = self.tokenizer.decode(s)
            return s

        gen_out = self.inference_step(generator, [model], sample)
        hyps, refs = [], []
        for i in range(len(gen_out)):
            hyps.append(decode(gen_out[i][0]["tokens"], is_ref=False))
            refs.append(
                decode(
                    utils.strip_pad(sample["target"][i], self.target_dictionary.pad()),
                    is_ref=True,  # don't count <unk> as matches to the hypo
                )
            )
        if self.cfg.eval_bleu_print_samples:
            logger.info("H-{} {}".format(sample["id"][0], hyps[0]))
            logger.info("T-{} {}".format(sample["id"][0], refs[0]))

        eval_tokenization = "none" if self.cfg.eval_tokenized_bleu else "13a"
        return sacrebleu.corpus_bleu(hyps, [refs], tokenize=eval_tokenization)

    def reduce_metrics(self, logging_outputs, criterion):
        super().reduce_metrics(logging_outputs, criterion)

        if self.cfg.eval_wer:
            zero = torch.scalar_tensor(0.0)
            num_char_errors = sum(
                log.get("_num_char_errors", zero) for log in logging_outputs
            )
            num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs)
            num_word_errors = sum(
                log.get("_num_word_errors", zero) for log in logging_outputs
            )
            num_words = sum(log.get("_num_words", zero) for log in logging_outputs)
            metrics.log_scalar("_num_char_errors", num_char_errors)
            metrics.log_scalar("_num_chars", num_chars)
            metrics.log_scalar("_num_word_errors", num_word_errors)
            metrics.log_scalar("_num_words", num_words)
            if num_chars > 0:
                metrics.log_derived(
                    "uer",
                    lambda meters: meters["_num_char_errors"].sum
                    * 100.0
                    / meters["_num_chars"].sum
                    if meters["_num_chars"].sum > 0
                    else float("nan"),
                )
            if num_words > 0:
                metrics.log_derived(
                    "wer",
                    lambda meters: meters["_num_word_errors"].sum
                    * 100.0
                    / meters["_num_words"].sum
                    if meters["_num_words"].sum > 0
                    else float("nan"),
                )
        if self.cfg.eval_bleu:
            len_keys = ["_bleu_sys_len", "_bleu_ref_len"]
            count_keys = [f"_bleu_counts_{i}" for i in range(4)]
            total_keys = [f"_bleu_totals_{i}" for i in range(4)]
            for k in len_keys + count_keys + total_keys:
                metrics.log_scalar(k, sum(log.get(k, 0) for log in logging_outputs))

            import sacrebleu

            metrics.log_derived(
                "bleu",
                lambda meters: sacrebleu.compute_bleu(
                    correct=[meters[k].sum for k in count_keys],
                    total=[meters[k].sum for k in total_keys],
                    sys_len=meters["_bleu_sys_len"].sum,
                    ref_len=meters["_bleu_ref_len"].sum,
                    smooth_method="exp",
                ).score,
            )