File size: 1,966 Bytes
85ba398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch


class RotaryPositionalEmbedding(torch.nn.Module):
    def __init__(self, dim, base=10000, precision=torch.half):
        """Rotary positional embedding
        Reference : https://blog.eleuther.ai/rotary-embeddings/
        Paper: https://arxiv.org/pdf/2104.09864.pdf
        Args:
            dim: Dimension of embedding
            base: Base value for exponential
            precision: precision to use for numerical values
        """
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer("inv_freq", inv_freq)
        self.seq_len_cached = 0
        self.cos_cached = torch.empty(self.seq_len_cached, 1, 1, dim)
        self.sin_cached = torch.empty(self.seq_len_cached, 1, 1, dim)
        self.precision = precision

    def forward(self, x, seq_len: int = 0):
        """
        Args:
            x: Input x with T X B X C
            seq_len: Sequence length of input x
        """
        if seq_len > self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.cos_cached = emb.cos().view(emb.size(0), 1, 1, emb.size(1))
            self.sin_cached = emb.sin().view(emb.size(0), 1, 1, emb.size(1))
        return self.cos_cached, self.sin_cached

# rotary pos emb helpers:
def rotate_half(x):
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat(
        (-x2, x1), dim=x1.ndim - 1
    )  # dim=-1 triggers a bug in earlier torch versions


def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
    cos, sin = (
        cos[offset : q.shape[0] + offset, ...],
        sin[offset : q.shape[0] + offset, ...],
    )
    return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)