Spaces:
Runtime error
Runtime error
File size: 35,236 Bytes
85ba398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import Parameter
try:
from xformers.components.attention import build_attention
from xformers.components.attention.utils import maybe_merge_masks
_xformers_available = True
except ImportError:
_xformers_available = False
from fairseq import utils
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
from fairseq.models.fairseq_incremental_decoder import FairseqIncrementalDecoder
# TODO: move this into xformers?
# TODO: uint8 input type should just output a bool
def _mask_for_xformers(mask: Tensor, to_dtype: Optional[torch.dtype] = None):
"""
call to pytorch multihead accepts three mask types:
- ByteTensor where non-zero means to mask
- FloatTensor which is an additive mask
- BoolTensor where True means to mask
xFormers currently accepts boolean and additive maks. For boolean masks
the values have opposite meaning. For a BoolTensor True mean to keep the value.
"""
float_types = [torch.float, torch.float16]
# If an input mask is a float it is an additive mask. Otherwise it is either uint8 or bool.
additive = mask.dtype in float_types
# If to_dype is not specified, keep same dtype as mask.
to_dtype = mask.dtype if to_dtype is None else to_dtype
to_additive = to_dtype in float_types
if additive:
if to_additive:
return mask.to(to_dtype)
mask = mask < 0
if to_additive:
# return additive mask
new_mask = torch.zeros_like(mask, dtype=to_dtype)
new_mask = new_mask.masked_fill_(mask, -float("inf"))
return new_mask
# In xFormers True is value to keep rather than value to mask
mask = ~mask.to(torch.bool)
mask = mask.to(to_dtype)
return mask
class MultiheadAttention(FairseqIncrementalDecoder):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
dictionary=None,
q_noise=0.0,
qn_block_size=8,
# TODO: pass in config rather than string.
# config defined in xformers.components.attention.AttentionConfig
xformers_att_config: Optional[str] = None,
xformers_blocksparse_layout: Optional[
torch.Tensor
] = None, # This should be part of the config
xformers_blocksparse_blocksize: Optional[
int
] = 16, # This should be part of the config
):
super().__init__(dictionary)
xformers_att_config = utils.eval_str_dict(xformers_att_config)
self.use_xformers = xformers_att_config is not None
if self.use_xformers and not _xformers_available:
raise ImportError("\n\n Please install xFormers.")
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout_module = FairseqDropout(
dropout, module_name=self.__class__.__name__
)
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim**-0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, (
"Self-attention requires query, key and " "value to be of the same size"
)
self.k_proj = quant_noise(
nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.v_proj = quant_noise(
nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.q_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
self.out_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
)
if add_bias_kv:
self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.beam_size = 1
self.reset_parameters()
if self.use_xformers:
xformers_att_config["dropout"] = xformers_att_config.get("dropout", dropout)
xformers_att_config["num_heads"] = xformers_att_config.get(
"num_heads", num_heads
)
if xformers_blocksparse_layout is not None:
# Could be part of a single config passed only once
xformers_att_config["block_size"] = xformers_blocksparse_blocksize
xformers_att_config["layout"] = xformers_blocksparse_layout
xformers_att_config["name"] = "blocksparse"
self.attention = build_attention(xformers_att_config)
self.onnx_trace = False
self.skip_embed_dim_check = False
self.init_incremental_state()
def prepare_for_onnx_export_(self):
self.onnx_trace = True
def reset_parameters(self):
if self.qkv_same_dim:
# Empirically observed the convergence to be much better with
# the scaled initialization
nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
else:
nn.init.xavier_uniform_(self.k_proj.weight)
nn.init.xavier_uniform_(self.v_proj.weight)
nn.init.xavier_uniform_(self.q_proj.weight)
nn.init.xavier_uniform_(self.out_proj.weight)
if self.out_proj.bias is not None:
nn.init.constant_(self.out_proj.bias, 0.0)
if self.bias_k is not None:
nn.init.xavier_normal_(self.bias_k)
if self.bias_v is not None:
nn.init.xavier_normal_(self.bias_v)
def _get_reserve_head_index(self, num_heads_to_keep: int):
k_proj_heads_norm = []
q_proj_heads_norm = []
v_proj_heads_norm = []
for i in range(self.num_heads):
start_idx = i * self.head_dim
end_idx = (i + 1) * self.head_dim
k_proj_heads_norm.append(
torch.sum(
torch.abs(
self.k_proj.weight[
start_idx:end_idx,
]
)
).tolist()
+ torch.sum(torch.abs(self.k_proj.bias[start_idx:end_idx])).tolist()
)
q_proj_heads_norm.append(
torch.sum(
torch.abs(
self.q_proj.weight[
start_idx:end_idx,
]
)
).tolist()
+ torch.sum(torch.abs(self.q_proj.bias[start_idx:end_idx])).tolist()
)
v_proj_heads_norm.append(
torch.sum(
torch.abs(
self.v_proj.weight[
start_idx:end_idx,
]
)
).tolist()
+ torch.sum(torch.abs(self.v_proj.bias[start_idx:end_idx])).tolist()
)
heads_norm = []
for i in range(self.num_heads):
heads_norm.append(
k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i]
)
sorted_head_index = sorted(
range(self.num_heads), key=lambda k: heads_norm[k], reverse=True
)
reserve_head_index = []
for i in range(num_heads_to_keep):
start = sorted_head_index[i] * self.head_dim
end = (sorted_head_index[i] + 1) * self.head_dim
reserve_head_index.append((start, end))
return reserve_head_index
def _adaptive_prune_heads(self, reserve_head_index: List[Tuple[int, int]]):
new_q_weight = []
new_q_bias = []
new_k_weight = []
new_k_bias = []
new_v_weight = []
new_v_bias = []
new_out_proj_weight = []
for ele in reserve_head_index:
start_idx, end_idx = ele
new_q_weight.append(
self.q_proj.weight[
start_idx:end_idx,
]
)
new_q_bias.append(self.q_proj.bias[start_idx:end_idx])
new_k_weight.append(
self.k_proj.weight[
start_idx:end_idx,
]
)
new_k_bias.append(self.k_proj.bias[start_idx:end_idx])
new_v_weight.append(
self.v_proj.weight[
start_idx:end_idx,
]
)
new_v_bias.append(self.v_proj.bias[start_idx:end_idx])
new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])
new_q_weight = torch.cat(new_q_weight).detach()
new_k_weight = torch.cat(new_k_weight).detach()
new_v_weight = torch.cat(new_v_weight).detach()
new_out_proj_weight = torch.cat(new_out_proj_weight, dim=-1).detach()
new_q_weight.requires_grad = True
new_k_weight.requires_grad = True
new_v_weight.requires_grad = True
new_out_proj_weight.requires_grad = True
new_q_bias = torch.cat(new_q_bias).detach()
new_q_bias.requires_grad = True
new_k_bias = torch.cat(new_k_bias).detach()
new_k_bias.requires_grad = True
new_v_bias = torch.cat(new_v_bias).detach()
new_v_bias.requires_grad = True
self.q_proj.weight = torch.nn.Parameter(new_q_weight)
self.q_proj.bias = torch.nn.Parameter(new_q_bias)
self.k_proj.weight = torch.nn.Parameter(new_k_weight)
self.k_proj.bias = torch.nn.Parameter(new_k_bias)
self.v_proj.weight = torch.nn.Parameter(new_v_weight)
self.v_proj.bias = torch.nn.Parameter(new_v_bias)
self.out_proj.weight = torch.nn.Parameter(new_out_proj_weight)
self.num_heads = len(reserve_head_index)
self.embed_dim = self.head_dim * self.num_heads
self.q_proj.out_features = self.embed_dim
self.k_proj.out_features = self.embed_dim
self.v_proj.out_features = self.embed_dim
def _set_skip_embed_dim_check(self):
self.skip_embed_dim_check = True
def _pad_masks(
self,
key_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor],
) -> Tuple[Optional[Tensor], Optional[Tensor]]:
if attn_mask is not None:
shape = attn_mask.size()[:-1] + torch.Size([1])
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(shape)], dim=-1)
if key_padding_mask is not None:
shape = key_padding_mask.size()[:-1] + torch.Size([1])
key_padding_mask = torch.cat(
[
key_padding_mask,
key_padding_mask.new_zeros(shape),
],
dim=-1,
)
return key_padding_mask, attn_mask
def _add_bias(
self,
k: Tensor,
v: Tensor,
key_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor],
bsz: int,
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
assert self.bias_k is not None
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
key_padding_mask, attn_mask = self._pad_masks(
key_padding_mask=key_padding_mask, attn_mask=attn_mask
)
return k, v, key_padding_mask, attn_mask
def _append_zero_attn(
self,
k: Tensor,
v: Tensor,
key_padding_mask: Optional[Tensor],
attn_mask: Optional[Tensor],
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
zero_attn_shape = k.size()[:-2] + torch.Size([1]) + k.size()[-1:]
k = torch.cat(
[k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=-2
)
v = torch.cat(
[v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=-2
)
key_padding_mask, attn_mask = self._pad_masks(
key_padding_mask=key_padding_mask, attn_mask=attn_mask
)
return k, v, key_padding_mask, attn_mask
def _xformers_attn_forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
tgt_len, bsz, embed_dim = query.size()
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == tgt_len
if self.self_attention:
key = query
value = query
elif self.encoder_decoder_attention:
value = key
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
if self.bias_k is not None:
assert self.bias_v is not None
k, v, attn_mask, key_padding_mask = self._add_bias(
k, v, attn_mask, key_padding_mask, bsz
)
def fold_heads(x):
return (
x.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
def split_heads(x):
return (
x.contiguous()
.view(-1, bsz, self.num_heads, self.head_dim)
.transpose(0, 1)
.transpose(1, 2)
)
massage = split_heads if self.attention.requires_head_dimension else fold_heads
q = massage(q)
if k is not None:
k = massage(k)
if v is not None:
v = massage(v)
if self.add_zero_attn:
k, v, key_padding_mask, attn_mask = self._append_zero_attn(
k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
)
kwargs = {}
if attn_mask is not None and self.attention.supports_attention_mask:
attn_mask = _mask_for_xformers(attn_mask, to_dtype=q.dtype)
kwargs["att_mask"] = attn_mask
if key_padding_mask is not None:
key_padding_mask = _mask_for_xformers(key_padding_mask, to_dtype=torch.bool)
if not self.attention.requires_separate_masks:
attn_mask = maybe_merge_masks(
attn_mask,
key_padding_mask,
batch_size=bsz,
src_len=k.size(-2),
tgt_len=q.size(-2),
num_heads=self.num_heads,
)
key_padding_mask = None
kwargs["att_mask"] = attn_mask
if self.attention.supports_key_padding_mask:
kwargs["key_padding_mask"] = key_padding_mask
y = self.attention(q, k, v, **kwargs)
y = (
y.view(bsz, self.num_heads, tgt_len, self.head_dim)
.transpose(1, 2)
.flatten(start_dim=2, end_dim=3)
.transpose(0, 1)
)
assert list(y.size()) == [tgt_len, bsz, embed_dim]
# Dropout not needed because already applied in attention.
# It is applied to the attention weights before matmul with v.
y = self.out_proj(y)
# TODO: support returning attention weights if needed.
return y, None
def forward(
self,
query: Tensor,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
is_tpu = query.device.type == "xla"
tgt_len, bsz, embed_dim = query.size()
src_len = tgt_len
if not self.skip_embed_dim_check:
assert (
embed_dim == self.embed_dim
), f"query dim {embed_dim} != {self.embed_dim}"
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if key is not None:
src_len, key_bsz, _ = key.size()
if not torch.jit.is_scripting():
assert value is not None
assert src_len, key_bsz == value.shape[:2]
if (
not self.onnx_trace
and not is_tpu # don't use PyTorch version on TPUs
and incremental_state is None
and not static_kv
# A workaround for quantization to work. Otherwise JIT compilation
# treats bias in linear module as method.
and not torch.jit.is_scripting()
# The Multihead attention implemented in pytorch forces strong dimension check
# for input embedding dimention and K,Q,V projection dimension.
# Since pruning will break the dimension check and it is not easy to modify the pytorch API,
# it is preferred to bypass the pytorch MHA when we need to skip embed_dim_check
and not self.skip_embed_dim_check
):
assert key is not None and value is not None
if self.use_xformers:
return self._xformers_attn_forward(
query, key, value, key_padding_mask, need_weights, attn_mask
)
else:
return F.multi_head_attention_forward(
query,
key,
value,
self.embed_dim,
self.num_heads,
torch.empty([0]),
torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout_module.p,
self.out_proj.weight,
self.out_proj.bias,
self.training or self.dropout_module.apply_during_inference,
key_padding_mask.bool() if key_padding_mask is not None else None,
need_weights,
attn_mask,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
)
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
if self.beam_size > 1 and bsz == key.size(1):
# key is [T, bsz*beam_size, C], reduce to [T, bsz, C]
key = key.view(key.size(0), -1, self.beam_size, key.size(2))[
:, :, 0, :
]
if key_padding_mask is not None:
key_padding_mask = key_padding_mask.view(
-1, self.beam_size, key_padding_mask.size(1)
)[:, 0, :]
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k, v, attn_mask, key_padding_mask = self._add_bias(
k, v, attn_mask, key_padding_mask, bsz
)
q = (
q.contiguous()
.view(tgt_len, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
kv_bsz = bsz # need default value for scripting
if k is not None:
kv_bsz = k.size(1)
k = (
k.contiguous()
.view(-1, kv_bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous()
.view(-1, kv_bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
kv_bsz = _prev_key.size(0)
prev_key = _prev_key.view(kv_bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
src_len = k.size(1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
assert kv_bsz == _prev_value.size(0)
prev_value = _prev_value.view(
kv_bsz * self.num_heads, -1, self.head_dim
)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=kv_bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(
kv_bsz, self.num_heads, -1, self.head_dim
)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
assert k.size(1) == src_len
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == kv_bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k, v, key_padding_mask, attn_mask = self._append_zero_attn(
k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
)
if self.encoder_decoder_attention and bsz != kv_bsz:
attn_weights = torch.einsum(
"bxhtd,bhsd->bxhts",
q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]),
k.view((kv_bsz, self.num_heads) + k.size()[1:]),
)
attn_weights = attn_weights.reshape((-1,) + attn_weights.size()[-2:])
else:
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
if self.onnx_trace:
attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if not is_tpu:
attn_weights = attn_weights.view(
kv_bsz, -1, self.num_heads, tgt_len, src_len
)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1)
.unsqueeze(2)
.unsqueeze(3)
.to(torch.bool),
float("-inf"),
)
else:
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = utils.softmax(
attn_weights, dim=-1, onnx_trace=self.onnx_trace
)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
attn: Optional[Tensor] = None
if self.encoder_decoder_attention and bsz != kv_bsz:
attn = torch.einsum(
"bxhts,bhsd->bxhtd",
attn_probs.view(
(
kv_bsz,
-1,
self.num_heads,
)
+ attn_probs.size()[1:]
),
v.view(
(
kv_bsz,
self.num_heads,
)
+ v.size()[1:]
),
)
attn = attn.reshape((-1,) + attn.size()[-2:])
else:
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
if self.onnx_trace and attn.size(1) == 1:
# when ONNX tracing a single decoder step (sequence length == 1)
# the transpose is a no-op copy before view, thus unnecessary
attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
else:
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights
@staticmethod
def _append_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
)
# During incremental decoding, as the padding token enters and
# leaves the frame, there will be a time when prev or current
# is None
elif prev_key_padding_mask is not None:
if src_len > prev_key_padding_mask.size(1):
filler = torch.zeros(
(batch_size, src_len - prev_key_padding_mask.size(1)),
device=prev_key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[prev_key_padding_mask.float(), filler.float()], dim=1
)
else:
new_key_padding_mask = prev_key_padding_mask.float()
elif key_padding_mask is not None:
if src_len > key_padding_mask.size(1):
filler = torch.zeros(
(batch_size, src_len - key_padding_mask.size(1)),
device=key_padding_mask.device,
)
new_key_padding_mask = torch.cat(
[filler.float(), key_padding_mask.float()], dim=1
)
else:
new_key_padding_mask = key_padding_mask.float()
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
@torch.jit.export
def reorder_incremental_state(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
new_order: Tensor,
):
"""Reorder buffered internal state (for incremental generation)."""
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
for k in input_buffer.keys():
input_buffer_k = input_buffer[k]
if input_buffer_k is not None:
if self.encoder_decoder_attention:
if input_buffer_k.size(0) * self.beam_size == new_order.size(0):
return incremental_state
elif self.beam_size > 1:
input_buffer[k] = input_buffer_k.index_select(
0,
new_order.reshape(-1, self.beam_size)[:, 0]
// self.beam_size,
)
else:
input_buffer[k] = input_buffer_k.index_select(0, new_order)
else:
input_buffer[k] = input_buffer_k.index_select(0, new_order)
incremental_state = self._set_input_buffer(incremental_state, input_buffer)
return incremental_state
def set_beam_size(self, beam_size):
"""Used for effiecient beamable enc-dec attention"""
self.beam_size = beam_size
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
) -> Dict[str, Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, "attn_state")
if result is not None:
return result
else:
empty_result: Dict[str, Optional[Tensor]] = {}
return empty_result
def _set_input_buffer(
self,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
buffer: Dict[str, Optional[Tensor]],
):
return self.set_incremental_state(incremental_state, "attn_state", buffer)
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
return attn_weights
def upgrade_state_dict_named(self, state_dict, name):
prefix = name + "." if name != "" else ""
items_to_add = {}
keys_to_remove = []
for k in state_dict.keys():
if k.endswith(prefix + "in_proj_weight"):
# in_proj_weight used to be q + k + v with same dimensions
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]
keys_to_remove.append(k)
k_bias = prefix + "in_proj_bias"
if k_bias in state_dict.keys():
dim = int(state_dict[k].shape[0] / 3)
items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
dim : 2 * dim
]
items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]
keys_to_remove.append(prefix + "in_proj_bias")
for k in keys_to_remove:
del state_dict[k]
for key, value in items_to_add.items():
state_dict[key] = value
|