File size: 35,236 Bytes
85ba398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import Parameter

try:
    from xformers.components.attention import build_attention
    from xformers.components.attention.utils import maybe_merge_masks

    _xformers_available = True
except ImportError:
    _xformers_available = False

from fairseq import utils
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.quant_noise import quant_noise
from fairseq.models.fairseq_incremental_decoder import FairseqIncrementalDecoder


# TODO: move this into xformers?
# TODO: uint8 input type should just output a bool
def _mask_for_xformers(mask: Tensor, to_dtype: Optional[torch.dtype] = None):
    """
    call to pytorch multihead accepts three mask types:
        - ByteTensor where non-zero means to mask
        - FloatTensor which is an additive mask
        - BoolTensor where True means to mask
    xFormers currently accepts boolean and additive maks. For boolean masks
    the values have opposite meaning. For a BoolTensor True mean to keep the value.
    """
    float_types = [torch.float, torch.float16]
    # If an input mask is a float it is an additive mask. Otherwise it is either uint8 or bool.
    additive = mask.dtype in float_types
    # If to_dype is not specified, keep same dtype as mask.
    to_dtype = mask.dtype if to_dtype is None else to_dtype
    to_additive = to_dtype in float_types

    if additive:
        if to_additive:
            return mask.to(to_dtype)
        mask = mask < 0

    if to_additive:
        # return additive mask
        new_mask = torch.zeros_like(mask, dtype=to_dtype)
        new_mask = new_mask.masked_fill_(mask, -float("inf"))
        return new_mask

    # In xFormers True is value to keep rather than value to mask
    mask = ~mask.to(torch.bool)
    mask = mask.to(to_dtype)
    return mask


class MultiheadAttention(FairseqIncrementalDecoder):
    """Multi-headed attention.

    See "Attention Is All You Need" for more details.
    """

    def __init__(
        self,
        embed_dim,
        num_heads,
        kdim=None,
        vdim=None,
        dropout=0.0,
        bias=True,
        add_bias_kv=False,
        add_zero_attn=False,
        self_attention=False,
        encoder_decoder_attention=False,
        dictionary=None,
        q_noise=0.0,
        qn_block_size=8,
        # TODO: pass in config rather than string.
        # config defined in xformers.components.attention.AttentionConfig
        xformers_att_config: Optional[str] = None,
        xformers_blocksparse_layout: Optional[
            torch.Tensor
        ] = None,  # This should be part of the config
        xformers_blocksparse_blocksize: Optional[
            int
        ] = 16,  # This should be part of the config
    ):
        super().__init__(dictionary)

        xformers_att_config = utils.eval_str_dict(xformers_att_config)
        self.use_xformers = xformers_att_config is not None
        if self.use_xformers and not _xformers_available:
            raise ImportError("\n\n  Please install xFormers.")
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout_module = FairseqDropout(
            dropout, module_name=self.__class__.__name__
        )

        self.head_dim = embed_dim // num_heads
        assert (
            self.head_dim * num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim**-0.5

        self.self_attention = self_attention
        self.encoder_decoder_attention = encoder_decoder_attention

        assert not self.self_attention or self.qkv_same_dim, (
            "Self-attention requires query, key and " "value to be of the same size"
        )

        self.k_proj = quant_noise(
            nn.Linear(self.kdim, embed_dim, bias=bias), q_noise, qn_block_size
        )
        self.v_proj = quant_noise(
            nn.Linear(self.vdim, embed_dim, bias=bias), q_noise, qn_block_size
        )
        self.q_proj = quant_noise(
            nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
        )

        self.out_proj = quant_noise(
            nn.Linear(embed_dim, embed_dim, bias=bias), q_noise, qn_block_size
        )

        if add_bias_kv:
            self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim))
            self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim))
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn
        self.beam_size = 1
        self.reset_parameters()

        if self.use_xformers:
            xformers_att_config["dropout"] = xformers_att_config.get("dropout", dropout)
            xformers_att_config["num_heads"] = xformers_att_config.get(
                "num_heads", num_heads
            )

            if xformers_blocksparse_layout is not None:
                # Could be part of a single config passed only once
                xformers_att_config["block_size"] = xformers_blocksparse_blocksize
                xformers_att_config["layout"] = xformers_blocksparse_layout
                xformers_att_config["name"] = "blocksparse"

            self.attention = build_attention(xformers_att_config)

        self.onnx_trace = False
        self.skip_embed_dim_check = False
        self.init_incremental_state()

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    def reset_parameters(self):
        if self.qkv_same_dim:
            # Empirically observed the convergence to be much better with
            # the scaled initialization
            nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
            nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
            nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
        else:
            nn.init.xavier_uniform_(self.k_proj.weight)
            nn.init.xavier_uniform_(self.v_proj.weight)
            nn.init.xavier_uniform_(self.q_proj.weight)

        nn.init.xavier_uniform_(self.out_proj.weight)
        if self.out_proj.bias is not None:
            nn.init.constant_(self.out_proj.bias, 0.0)
        if self.bias_k is not None:
            nn.init.xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            nn.init.xavier_normal_(self.bias_v)

    def _get_reserve_head_index(self, num_heads_to_keep: int):
        k_proj_heads_norm = []
        q_proj_heads_norm = []
        v_proj_heads_norm = []

        for i in range(self.num_heads):
            start_idx = i * self.head_dim
            end_idx = (i + 1) * self.head_dim
            k_proj_heads_norm.append(
                torch.sum(
                    torch.abs(
                        self.k_proj.weight[
                            start_idx:end_idx,
                        ]
                    )
                ).tolist()
                + torch.sum(torch.abs(self.k_proj.bias[start_idx:end_idx])).tolist()
            )
            q_proj_heads_norm.append(
                torch.sum(
                    torch.abs(
                        self.q_proj.weight[
                            start_idx:end_idx,
                        ]
                    )
                ).tolist()
                + torch.sum(torch.abs(self.q_proj.bias[start_idx:end_idx])).tolist()
            )
            v_proj_heads_norm.append(
                torch.sum(
                    torch.abs(
                        self.v_proj.weight[
                            start_idx:end_idx,
                        ]
                    )
                ).tolist()
                + torch.sum(torch.abs(self.v_proj.bias[start_idx:end_idx])).tolist()
            )

        heads_norm = []
        for i in range(self.num_heads):
            heads_norm.append(
                k_proj_heads_norm[i] + q_proj_heads_norm[i] + v_proj_heads_norm[i]
            )

        sorted_head_index = sorted(
            range(self.num_heads), key=lambda k: heads_norm[k], reverse=True
        )
        reserve_head_index = []
        for i in range(num_heads_to_keep):
            start = sorted_head_index[i] * self.head_dim
            end = (sorted_head_index[i] + 1) * self.head_dim
            reserve_head_index.append((start, end))
        return reserve_head_index

    def _adaptive_prune_heads(self, reserve_head_index: List[Tuple[int, int]]):
        new_q_weight = []
        new_q_bias = []
        new_k_weight = []
        new_k_bias = []
        new_v_weight = []
        new_v_bias = []
        new_out_proj_weight = []

        for ele in reserve_head_index:
            start_idx, end_idx = ele
            new_q_weight.append(
                self.q_proj.weight[
                    start_idx:end_idx,
                ]
            )
            new_q_bias.append(self.q_proj.bias[start_idx:end_idx])

            new_k_weight.append(
                self.k_proj.weight[
                    start_idx:end_idx,
                ]
            )

            new_k_bias.append(self.k_proj.bias[start_idx:end_idx])

            new_v_weight.append(
                self.v_proj.weight[
                    start_idx:end_idx,
                ]
            )
            new_v_bias.append(self.v_proj.bias[start_idx:end_idx])

            new_out_proj_weight.append(self.out_proj.weight[:, start_idx:end_idx])

        new_q_weight = torch.cat(new_q_weight).detach()
        new_k_weight = torch.cat(new_k_weight).detach()
        new_v_weight = torch.cat(new_v_weight).detach()
        new_out_proj_weight = torch.cat(new_out_proj_weight, dim=-1).detach()
        new_q_weight.requires_grad = True
        new_k_weight.requires_grad = True
        new_v_weight.requires_grad = True
        new_out_proj_weight.requires_grad = True

        new_q_bias = torch.cat(new_q_bias).detach()
        new_q_bias.requires_grad = True

        new_k_bias = torch.cat(new_k_bias).detach()
        new_k_bias.requires_grad = True

        new_v_bias = torch.cat(new_v_bias).detach()
        new_v_bias.requires_grad = True

        self.q_proj.weight = torch.nn.Parameter(new_q_weight)
        self.q_proj.bias = torch.nn.Parameter(new_q_bias)

        self.k_proj.weight = torch.nn.Parameter(new_k_weight)
        self.k_proj.bias = torch.nn.Parameter(new_k_bias)

        self.v_proj.weight = torch.nn.Parameter(new_v_weight)
        self.v_proj.bias = torch.nn.Parameter(new_v_bias)

        self.out_proj.weight = torch.nn.Parameter(new_out_proj_weight)

        self.num_heads = len(reserve_head_index)
        self.embed_dim = self.head_dim * self.num_heads
        self.q_proj.out_features = self.embed_dim
        self.k_proj.out_features = self.embed_dim
        self.v_proj.out_features = self.embed_dim

    def _set_skip_embed_dim_check(self):
        self.skip_embed_dim_check = True

    def _pad_masks(
        self,
        key_padding_mask: Optional[Tensor],
        attn_mask: Optional[Tensor],
    ) -> Tuple[Optional[Tensor], Optional[Tensor]]:
        if attn_mask is not None:
            shape = attn_mask.size()[:-1] + torch.Size([1])
            attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(shape)], dim=-1)
        if key_padding_mask is not None:
            shape = key_padding_mask.size()[:-1] + torch.Size([1])
            key_padding_mask = torch.cat(
                [
                    key_padding_mask,
                    key_padding_mask.new_zeros(shape),
                ],
                dim=-1,
            )
        return key_padding_mask, attn_mask

    def _add_bias(
        self,
        k: Tensor,
        v: Tensor,
        key_padding_mask: Optional[Tensor],
        attn_mask: Optional[Tensor],
        bsz: int,
    ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
        assert self.bias_k is not None
        assert self.bias_v is not None
        k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
        v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
        key_padding_mask, attn_mask = self._pad_masks(
            key_padding_mask=key_padding_mask, attn_mask=attn_mask
        )
        return k, v, key_padding_mask, attn_mask

    def _append_zero_attn(
        self,
        k: Tensor,
        v: Tensor,
        key_padding_mask: Optional[Tensor],
        attn_mask: Optional[Tensor],
    ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
        zero_attn_shape = k.size()[:-2] + torch.Size([1]) + k.size()[-1:]
        k = torch.cat(
            [k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=-2
        )
        v = torch.cat(
            [v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=-2
        )
        key_padding_mask, attn_mask = self._pad_masks(
            key_padding_mask=key_padding_mask, attn_mask=attn_mask
        )
        return k, v, key_padding_mask, attn_mask

    def _xformers_attn_forward(
        self,
        query,
        key: Optional[Tensor],
        value: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
        need_weights: bool = True,
        attn_mask: Optional[Tensor] = None,
    ) -> Tuple[Tensor, Optional[Tensor]]:

        tgt_len, bsz, embed_dim = query.size()

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == bsz
            assert key_padding_mask.size(1) == tgt_len

        if self.self_attention:
            key = query
            value = query
        elif self.encoder_decoder_attention:
            value = key

        q = self.q_proj(query)
        k = self.k_proj(key)
        v = self.v_proj(value)

        if self.bias_k is not None:
            assert self.bias_v is not None
            k, v, attn_mask, key_padding_mask = self._add_bias(
                k, v, attn_mask, key_padding_mask, bsz
            )

        def fold_heads(x):
            return (
                x.contiguous()
                .view(-1, bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )

        def split_heads(x):
            return (
                x.contiguous()
                .view(-1, bsz, self.num_heads, self.head_dim)
                .transpose(0, 1)
                .transpose(1, 2)
            )

        massage = split_heads if self.attention.requires_head_dimension else fold_heads
        q = massage(q)
        if k is not None:
            k = massage(k)
        if v is not None:
            v = massage(v)

        if self.add_zero_attn:
            k, v, key_padding_mask, attn_mask = self._append_zero_attn(
                k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
            )

        kwargs = {}

        if attn_mask is not None and self.attention.supports_attention_mask:
            attn_mask = _mask_for_xformers(attn_mask, to_dtype=q.dtype)
            kwargs["att_mask"] = attn_mask

        if key_padding_mask is not None:
            key_padding_mask = _mask_for_xformers(key_padding_mask, to_dtype=torch.bool)
            if not self.attention.requires_separate_masks:
                attn_mask = maybe_merge_masks(
                    attn_mask,
                    key_padding_mask,
                    batch_size=bsz,
                    src_len=k.size(-2),
                    tgt_len=q.size(-2),
                    num_heads=self.num_heads,
                )
                key_padding_mask = None
                kwargs["att_mask"] = attn_mask
            if self.attention.supports_key_padding_mask:
                kwargs["key_padding_mask"] = key_padding_mask

        y = self.attention(q, k, v, **kwargs)

        y = (
            y.view(bsz, self.num_heads, tgt_len, self.head_dim)
            .transpose(1, 2)
            .flatten(start_dim=2, end_dim=3)
            .transpose(0, 1)
        )
        assert list(y.size()) == [tgt_len, bsz, embed_dim]

        # Dropout not needed because already applied in attention.
        # It is applied to the attention weights before matmul with v.
        y = self.out_proj(y)

        # TODO: support returning attention weights if needed.
        return y, None

    def forward(
        self,
        query: Tensor,
        key: Optional[Tensor],
        value: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        need_weights: bool = True,
        static_kv: bool = False,
        attn_mask: Optional[Tensor] = None,
        before_softmax: bool = False,
        need_head_weights: bool = False,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        """Input shape: Time x Batch x Channel

        Args:
            key_padding_mask (ByteTensor, optional): mask to exclude
                keys that are pads, of shape `(batch, src_len)`, where
                padding elements are indicated by 1s.
            need_weights (bool, optional): return the attention weights,
                averaged over heads (default: False).
            attn_mask (ByteTensor, optional): typically used to
                implement causal attention, where the mask prevents the
                attention from looking forward in time (default: None).
            before_softmax (bool, optional): return the raw attention
                weights and values before the attention softmax.
            need_head_weights (bool, optional): return the attention
                weights for each head. Implies *need_weights*. Default:
                return the average attention weights over all heads.
        """
        if need_head_weights:
            need_weights = True

        is_tpu = query.device.type == "xla"

        tgt_len, bsz, embed_dim = query.size()
        src_len = tgt_len
        if not self.skip_embed_dim_check:
            assert (
                embed_dim == self.embed_dim
            ), f"query dim {embed_dim} != {self.embed_dim}"
        assert list(query.size()) == [tgt_len, bsz, embed_dim]
        if key is not None:
            src_len, key_bsz, _ = key.size()
            if not torch.jit.is_scripting():
                assert value is not None
                assert src_len, key_bsz == value.shape[:2]

        if (
            not self.onnx_trace
            and not is_tpu  # don't use PyTorch version on TPUs
            and incremental_state is None
            and not static_kv
            # A workaround for quantization to work. Otherwise JIT compilation
            # treats bias in linear module as method.
            and not torch.jit.is_scripting()
            # The Multihead attention implemented in pytorch forces strong dimension check
            # for input embedding dimention and K,Q,V projection dimension.
            # Since pruning will break the dimension check and it is not easy to modify the pytorch API,
            # it is preferred to bypass the pytorch MHA when we need to skip embed_dim_check
            and not self.skip_embed_dim_check
        ):
            assert key is not None and value is not None

            if self.use_xformers:
                return self._xformers_attn_forward(
                    query, key, value, key_padding_mask, need_weights, attn_mask
                )

            else:
                return F.multi_head_attention_forward(
                    query,
                    key,
                    value,
                    self.embed_dim,
                    self.num_heads,
                    torch.empty([0]),
                    torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)),
                    self.bias_k,
                    self.bias_v,
                    self.add_zero_attn,
                    self.dropout_module.p,
                    self.out_proj.weight,
                    self.out_proj.bias,
                    self.training or self.dropout_module.apply_during_inference,
                    key_padding_mask.bool() if key_padding_mask is not None else None,
                    need_weights,
                    attn_mask,
                    use_separate_proj_weight=True,
                    q_proj_weight=self.q_proj.weight,
                    k_proj_weight=self.k_proj.weight,
                    v_proj_weight=self.v_proj.weight,
                )

        if incremental_state is not None:
            saved_state = self._get_input_buffer(incremental_state)
            if saved_state is not None and "prev_key" in saved_state:
                # previous time steps are cached - no need to recompute
                # key and value if they are static
                if static_kv:
                    assert self.encoder_decoder_attention and not self.self_attention
                    key = value = None
        else:
            saved_state = None

        if self.self_attention:
            q = self.q_proj(query)
            k = self.k_proj(query)
            v = self.v_proj(query)
        elif self.encoder_decoder_attention:
            # encoder-decoder attention
            q = self.q_proj(query)
            if key is None:
                assert value is None
                k = v = None
            else:
                if self.beam_size > 1 and bsz == key.size(1):
                    # key is [T, bsz*beam_size, C], reduce to [T, bsz, C]
                    key = key.view(key.size(0), -1, self.beam_size, key.size(2))[
                        :, :, 0, :
                    ]
                    if key_padding_mask is not None:
                        key_padding_mask = key_padding_mask.view(
                            -1, self.beam_size, key_padding_mask.size(1)
                        )[:, 0, :]
                k = self.k_proj(key)
                v = self.v_proj(key)

        else:
            assert key is not None and value is not None
            q = self.q_proj(query)
            k = self.k_proj(key)
            v = self.v_proj(value)
        q *= self.scaling

        if self.bias_k is not None:
            assert self.bias_v is not None
            k, v, attn_mask, key_padding_mask = self._add_bias(
                k, v, attn_mask, key_padding_mask, bsz
            )

        q = (
            q.contiguous()
            .view(tgt_len, bsz * self.num_heads, self.head_dim)
            .transpose(0, 1)
        )
        kv_bsz = bsz  # need default value for scripting
        if k is not None:
            kv_bsz = k.size(1)
            k = (
                k.contiguous()
                .view(-1, kv_bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )
        if v is not None:
            v = (
                v.contiguous()
                .view(-1, kv_bsz * self.num_heads, self.head_dim)
                .transpose(0, 1)
            )

        if saved_state is not None:
            # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
            if "prev_key" in saved_state:
                _prev_key = saved_state["prev_key"]
                assert _prev_key is not None
                kv_bsz = _prev_key.size(0)
                prev_key = _prev_key.view(kv_bsz * self.num_heads, -1, self.head_dim)
                if static_kv:
                    k = prev_key
                else:
                    assert k is not None
                    k = torch.cat([prev_key, k], dim=1)
                src_len = k.size(1)
            if "prev_value" in saved_state:
                _prev_value = saved_state["prev_value"]
                assert _prev_value is not None
                assert kv_bsz == _prev_value.size(0)
                prev_value = _prev_value.view(
                    kv_bsz * self.num_heads, -1, self.head_dim
                )
                if static_kv:
                    v = prev_value
                else:
                    assert v is not None
                    v = torch.cat([prev_value, v], dim=1)
            prev_key_padding_mask: Optional[Tensor] = None
            if "prev_key_padding_mask" in saved_state:
                prev_key_padding_mask = saved_state["prev_key_padding_mask"]
            assert k is not None and v is not None
            key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
                key_padding_mask=key_padding_mask,
                prev_key_padding_mask=prev_key_padding_mask,
                batch_size=kv_bsz,
                src_len=k.size(1),
                static_kv=static_kv,
            )

            saved_state["prev_key"] = k.view(kv_bsz, self.num_heads, -1, self.head_dim)
            saved_state["prev_value"] = v.view(
                kv_bsz, self.num_heads, -1, self.head_dim
            )
            saved_state["prev_key_padding_mask"] = key_padding_mask
            # In this branch incremental_state is never None
            assert incremental_state is not None
            incremental_state = self._set_input_buffer(incremental_state, saved_state)
        assert k is not None
        assert k.size(1) == src_len

        # This is part of a workaround to get around fork/join parallelism
        # not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.dim() == 0:
            key_padding_mask = None

        if key_padding_mask is not None:
            assert key_padding_mask.size(0) == kv_bsz
            assert key_padding_mask.size(1) == src_len

        if self.add_zero_attn:
            assert v is not None
            src_len += 1
            k, v, key_padding_mask, attn_mask = self._append_zero_attn(
                k=k, v=v, key_padding_mask=key_padding_mask, attn_mask=attn_mask
            )

        if self.encoder_decoder_attention and bsz != kv_bsz:
            attn_weights = torch.einsum(
                "bxhtd,bhsd->bxhts",
                q.view((kv_bsz, -1, self.num_heads) + q.size()[1:]),
                k.view((kv_bsz, self.num_heads) + k.size()[1:]),
            )
            attn_weights = attn_weights.reshape((-1,) + attn_weights.size()[-2:])
        else:
            attn_weights = torch.bmm(q, k.transpose(1, 2))
        attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)

        assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]

        if attn_mask is not None:
            attn_mask = attn_mask.unsqueeze(0)
            if self.onnx_trace:
                attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1)
            attn_weights += attn_mask

        if key_padding_mask is not None:
            # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            if not is_tpu:
                attn_weights = attn_weights.view(
                    kv_bsz, -1, self.num_heads, tgt_len, src_len
                )
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1)
                    .unsqueeze(2)
                    .unsqueeze(3)
                    .to(torch.bool),
                    float("-inf"),
                )
            else:
                attn_weights = attn_weights.transpose(0, 2)
                attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
                attn_weights = attn_weights.transpose(0, 2)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if before_softmax:
            return attn_weights, v

        attn_weights_float = utils.softmax(
            attn_weights, dim=-1, onnx_trace=self.onnx_trace
        )
        attn_weights = attn_weights_float.type_as(attn_weights)
        attn_probs = self.dropout_module(attn_weights)

        assert v is not None
        attn: Optional[Tensor] = None
        if self.encoder_decoder_attention and bsz != kv_bsz:
            attn = torch.einsum(
                "bxhts,bhsd->bxhtd",
                attn_probs.view(
                    (
                        kv_bsz,
                        -1,
                        self.num_heads,
                    )
                    + attn_probs.size()[1:]
                ),
                v.view(
                    (
                        kv_bsz,
                        self.num_heads,
                    )
                    + v.size()[1:]
                ),
            )
            attn = attn.reshape((-1,) + attn.size()[-2:])
        else:
            attn = torch.bmm(attn_probs, v)
        assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
        if self.onnx_trace and attn.size(1) == 1:
            # when ONNX tracing a single decoder step (sequence length == 1)
            # the transpose is a no-op copy before view, thus unnecessary
            attn = attn.contiguous().view(tgt_len, bsz, self.embed_dim)
        else:
            attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, self.embed_dim)
        attn = self.out_proj(attn)
        attn_weights: Optional[Tensor] = None
        if need_weights:
            attn_weights = attn_weights_float.view(
                bsz, self.num_heads, tgt_len, src_len
            ).transpose(1, 0)
            if not need_head_weights:
                # average attention weights over heads
                attn_weights = attn_weights.mean(dim=0)

        return attn, attn_weights

    @staticmethod
    def _append_prev_key_padding_mask(
        key_padding_mask: Optional[Tensor],
        prev_key_padding_mask: Optional[Tensor],
        batch_size: int,
        src_len: int,
        static_kv: bool,
    ) -> Optional[Tensor]:
        # saved key padding masks have shape (bsz, seq_len)
        if prev_key_padding_mask is not None and static_kv:
            new_key_padding_mask = prev_key_padding_mask
        elif prev_key_padding_mask is not None and key_padding_mask is not None:
            new_key_padding_mask = torch.cat(
                [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
            )
        # During incremental decoding, as the padding token enters and
        # leaves the frame, there will be a time when prev or current
        # is None
        elif prev_key_padding_mask is not None:
            if src_len > prev_key_padding_mask.size(1):
                filler = torch.zeros(
                    (batch_size, src_len - prev_key_padding_mask.size(1)),
                    device=prev_key_padding_mask.device,
                )
                new_key_padding_mask = torch.cat(
                    [prev_key_padding_mask.float(), filler.float()], dim=1
                )
            else:
                new_key_padding_mask = prev_key_padding_mask.float()
        elif key_padding_mask is not None:
            if src_len > key_padding_mask.size(1):
                filler = torch.zeros(
                    (batch_size, src_len - key_padding_mask.size(1)),
                    device=key_padding_mask.device,
                )
                new_key_padding_mask = torch.cat(
                    [filler.float(), key_padding_mask.float()], dim=1
                )
            else:
                new_key_padding_mask = key_padding_mask.float()
        else:
            new_key_padding_mask = prev_key_padding_mask
        return new_key_padding_mask

    @torch.jit.export
    def reorder_incremental_state(
        self,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
        new_order: Tensor,
    ):
        """Reorder buffered internal state (for incremental generation)."""
        input_buffer = self._get_input_buffer(incremental_state)
        if input_buffer is not None:
            for k in input_buffer.keys():
                input_buffer_k = input_buffer[k]
                if input_buffer_k is not None:
                    if self.encoder_decoder_attention:
                        if input_buffer_k.size(0) * self.beam_size == new_order.size(0):
                            return incremental_state
                        elif self.beam_size > 1:
                            input_buffer[k] = input_buffer_k.index_select(
                                0,
                                new_order.reshape(-1, self.beam_size)[:, 0]
                                // self.beam_size,
                            )
                        else:
                            input_buffer[k] = input_buffer_k.index_select(0, new_order)
                    else:
                        input_buffer[k] = input_buffer_k.index_select(0, new_order)
            incremental_state = self._set_input_buffer(incremental_state, input_buffer)
        return incremental_state

    def set_beam_size(self, beam_size):
        """Used for effiecient beamable enc-dec attention"""
        self.beam_size = beam_size

    def _get_input_buffer(
        self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
    ) -> Dict[str, Optional[Tensor]]:
        result = self.get_incremental_state(incremental_state, "attn_state")
        if result is not None:
            return result
        else:
            empty_result: Dict[str, Optional[Tensor]] = {}
            return empty_result

    def _set_input_buffer(
        self,
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
        buffer: Dict[str, Optional[Tensor]],
    ):
        return self.set_incremental_state(incremental_state, "attn_state", buffer)

    def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
        return attn_weights

    def upgrade_state_dict_named(self, state_dict, name):
        prefix = name + "." if name != "" else ""
        items_to_add = {}
        keys_to_remove = []
        for k in state_dict.keys():
            if k.endswith(prefix + "in_proj_weight"):
                # in_proj_weight used to be q + k + v with same dimensions
                dim = int(state_dict[k].shape[0] / 3)
                items_to_add[prefix + "q_proj.weight"] = state_dict[k][:dim]
                items_to_add[prefix + "k_proj.weight"] = state_dict[k][dim : 2 * dim]
                items_to_add[prefix + "v_proj.weight"] = state_dict[k][2 * dim :]

                keys_to_remove.append(k)

                k_bias = prefix + "in_proj_bias"
                if k_bias in state_dict.keys():
                    dim = int(state_dict[k].shape[0] / 3)
                    items_to_add[prefix + "q_proj.bias"] = state_dict[k_bias][:dim]
                    items_to_add[prefix + "k_proj.bias"] = state_dict[k_bias][
                        dim : 2 * dim
                    ]
                    items_to_add[prefix + "v_proj.bias"] = state_dict[k_bias][2 * dim :]

                    keys_to_remove.append(prefix + "in_proj_bias")

        for k in keys_to_remove:
            del state_dict[k]

        for key, value in items_to_add.items():
            state_dict[key] = value