Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,25 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import pipeline
|
|
|
|
| 3 |
|
| 4 |
-
def merge_tokens(tokens):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
merged_tokens = []
|
| 6 |
for token in tokens:
|
| 7 |
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
|
| 8 |
-
# If current token continues the entity of the last one, merge them
|
| 9 |
last_token = merged_tokens[-1]
|
| 10 |
last_token['word'] += token['word'].replace('##', '')
|
| 11 |
last_token['end'] = token['end']
|
|
@@ -16,19 +30,51 @@ def merge_tokens(tokens):
|
|
| 16 |
|
| 17 |
return merged_tokens
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
output = get_completion(input)
|
| 23 |
merged_tokens = merge_tokens(output)
|
| 24 |
return {"text": input, "entities": merged_tokens}
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
outputs=[gr.HighlightedText(label="Text with entities")],
|
| 30 |
-
title="NER with dslim/bert-base-NER",
|
| 31 |
-
description="Find entities using the `dslim/bert-base-NER` model under the hood!",
|
| 32 |
allow_flagging="never",
|
| 33 |
examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
|
| 34 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
from transformers import pipeline
|
| 4 |
+
from typing import List, Dict, Any
|
| 5 |
|
| 6 |
+
def merge_tokens(tokens: List[Dict[str, any]]) -> List[Dict[str, any]]:
|
| 7 |
+
"""
|
| 8 |
+
Merges tokens that belong to the same entity into a single token.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
tokens (List[Dict[str, any]]): A list of token dictionaries, each containing information about
|
| 12 |
+
the entity, word, start, end, and score.
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
List[Dict[str, any]]: A list of merged token dictionaries, where tokens that are part of the
|
| 16 |
+
same entity are combined into a single token with updated word, end,
|
| 17 |
+
and score values.
|
| 18 |
+
"""
|
| 19 |
merged_tokens = []
|
| 20 |
for token in tokens:
|
| 21 |
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
|
| 22 |
+
# If the current token continues the entity of the last one, merge them
|
| 23 |
last_token = merged_tokens[-1]
|
| 24 |
last_token['word'] += token['word'].replace('##', '')
|
| 25 |
last_token['end'] = token['end']
|
|
|
|
| 30 |
|
| 31 |
return merged_tokens
|
| 32 |
|
| 33 |
+
# Initialize Model
|
| 34 |
+
get_completion = pipeline("ner", model="dslim/bert-base-NER", device=0)
|
| 35 |
+
|
| 36 |
+
@spaces.GPU(duration=120)
|
| 37 |
+
def ner(input: str) -> Dict[str, Any]:
|
| 38 |
+
"""
|
| 39 |
+
Performs Named Entity Recognition (NER) on the given input text and merges tokens that belong
|
| 40 |
+
to the same entity into a single entity.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
input (str): The input text to analyze for named entities.
|
| 44 |
|
| 45 |
+
Returns:
|
| 46 |
+
Dict[str, Any]: A dictionary containing the original text and a list of identified entities
|
| 47 |
+
with merged tokens.
|
| 48 |
+
- "text": The original input text.
|
| 49 |
+
- "entities": A list of dictionaries, where each dictionary contains information
|
| 50 |
+
about a recognized entity, including the word, entity type, score, and positions.
|
| 51 |
+
"""
|
| 52 |
output = get_completion(input)
|
| 53 |
merged_tokens = merge_tokens(output)
|
| 54 |
return {"text": input, "entities": merged_tokens}
|
| 55 |
|
| 56 |
+
####### GRADIO APP #######
|
| 57 |
+
title = """<h1 id="title"> Named Entity Recognition </h1>"""
|
| 58 |
+
|
| 59 |
+
description = """
|
| 60 |
+
- The model used for Recognizing entities [BERT-BASE-NER](https://huggingface.co/dslim/bert-base-NER).
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
css = '''
|
| 64 |
+
h1#title {
|
| 65 |
+
text-align: center;
|
| 66 |
+
}
|
| 67 |
+
'''
|
| 68 |
+
|
| 69 |
+
theme = gr.themes.Soft()
|
| 70 |
+
demo = gr.Blocks(css=css, theme=theme)
|
| 71 |
+
|
| 72 |
+
with demo:
|
| 73 |
+
gr.Markdown(title)
|
| 74 |
+
gr.Markdown(description)
|
| 75 |
+
interface = gr.Interface(fn=ner,
|
| 76 |
+
inputs=[gr.Textbox(label="Text to find entities", lines=10)],
|
| 77 |
outputs=[gr.HighlightedText(label="Text with entities")],
|
|
|
|
|
|
|
| 78 |
allow_flagging="never",
|
| 79 |
examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace"])
|
| 80 |
|