Spaces:
Build error
Build error
| import os | |
| from pathlib import Path | |
| from typing import Any, Dict, Optional, Union | |
| import torch | |
| from torch.nn import CrossEntropyLoss | |
| from transformers import GenerationConfig, PretrainedConfig, PreTrainedModel | |
| from transformers.modeling_outputs import CausalLMOutputWithPast | |
| from modules import shared | |
| from modules.logging_colors import logger | |
| try: | |
| from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig | |
| except: | |
| logger.warning('Exllama module failed to load. Will attempt to load from repositories.') | |
| try: | |
| from modules.relative_imports import RelativeImport | |
| with RelativeImport("repositories/exllama"): | |
| from model import ExLlama, ExLlamaCache, ExLlamaConfig | |
| except: | |
| logger.error("Could not find repositories/exllama/. Make sure that exllama is cloned inside repositories/ and is up to date.") | |
| raise | |
| class ExllamaHF(PreTrainedModel): | |
| def __init__(self, config: ExLlamaConfig): | |
| super().__init__(PretrainedConfig()) | |
| self.ex_config = config | |
| self.ex_model = ExLlama(self.ex_config) | |
| self.ex_cache = ExLlamaCache(self.ex_model) | |
| self.generation_config = GenerationConfig() | |
| self.lora = None | |
| def _validate_model_class(self): | |
| pass | |
| def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]): | |
| pass | |
| def prepare_inputs_for_generation(self, input_ids, **kwargs): | |
| return {'input_ids': input_ids, **kwargs} | |
| def device(self) -> torch.device: | |
| return torch.device(0) | |
| def __call__(self, *args, **kwargs): | |
| # TODO: Some decoding methods (such as Contrastive Search) may not work at this time | |
| assert len(args) == 0, 'no *args should be passed to forward' | |
| use_cache = kwargs.get('use_cache', True) | |
| labels = kwargs.get('labels', None) | |
| seq = kwargs['input_ids'][0].tolist() | |
| cache = kwargs['past_key_values'] if 'past_key_values' in kwargs else None | |
| if labels is None: | |
| if cache is None: | |
| self.ex_cache.current_seq_len = 0 | |
| cache = self.ex_cache | |
| self.ex_model.forward(torch.tensor([seq[:-1]], dtype=torch.long), cache, preprocess_only=True, lora=self.lora) | |
| logits = self.ex_model.forward(torch.tensor([seq[-1:]], dtype=torch.long), cache, lora=self.lora).to(kwargs['input_ids'].device) | |
| else: | |
| if cache is None: | |
| self.ex_cache.current_seq_len = 0 | |
| cache = self.ex_cache | |
| logits = self.ex_model.forward(torch.tensor([seq], dtype=torch.long), cache, last_id_only=False, lora=self.lora) | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| shift_logits = shift_logits.view(-1, logits.shape[-1]) | |
| shift_labels = shift_labels.view(-1) | |
| # Enable model parallelism | |
| shift_labels = shift_labels.to(shift_logits.device) | |
| loss = loss_fct(shift_logits, shift_labels) | |
| return CausalLMOutputWithPast(logits=logits, past_key_values=cache if use_cache else None, loss=loss) | |
| def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): | |
| assert len(model_args) == 0 and len(kwargs) == 0, "extra args is currently not supported" | |
| if isinstance(pretrained_model_name_or_path, str): | |
| pretrained_model_name_or_path = Path(pretrained_model_name_or_path) | |
| pretrained_model_name_or_path = Path(f'{shared.args.model_dir}') / Path(pretrained_model_name_or_path) | |
| config = ExLlamaConfig(pretrained_model_name_or_path / 'config.json') | |
| # from 'oobabooga/text-generation-webui/modules/exllama.py' | |
| weight_path = None | |
| for ext in ['.safetensors', '.pt', '.bin']: | |
| found = list(pretrained_model_name_or_path.glob(f"*{ext}")) | |
| if len(found) > 0: | |
| weight_path = found[-1] | |
| break | |
| assert weight_path is not None, f'could not find weight in "{pretrained_model_name_or_path}"' | |
| config.model_path = str(weight_path) | |
| config.max_seq_len = shared.args.max_seq_len | |
| config.compress_pos_emb = shared.args.compress_pos_emb | |
| if shared.args.gpu_split: | |
| config.set_auto_map(shared.args.gpu_split) | |
| config.gpu_peer_fix = True | |
| if shared.args.alpha_value: | |
| config.alpha_value = shared.args.alpha_value | |
| config.calculate_rotary_embedding_base() | |
| if torch.version.hip: | |
| config.rmsnorm_no_half2 = True | |
| config.rope_no_half2 = True | |
| config.matmul_no_half2 = True | |
| config.silu_no_half2 = True | |
| # This slowes down a bit but align better with autogptq generation. | |
| # TODO: Should give user choice to tune the exllama config | |
| # config.fused_attn = False | |
| # config.fused_mlp_thd = 0 | |
| return ExllamaHF(config) | |