Spaces:
Sleeping
Sleeping
Update app1.py
Browse files
app1.py
CHANGED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from typing import Tuple, List
|
| 8 |
+
|
| 9 |
+
from constants import MODEL_PATH, DATABASE_DIR, DATABASE_PATH
|
| 10 |
+
from detector import SignatureDetector, download_model
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def create_gradio_interface():
|
| 14 |
+
# Download model if it doesn't exist
|
| 15 |
+
if not os.path.exists(MODEL_PATH):
|
| 16 |
+
download_model()
|
| 17 |
+
|
| 18 |
+
# Initialize the detector
|
| 19 |
+
detector = SignatureDetector(MODEL_PATH)
|
| 20 |
+
|
| 21 |
+
css = """
|
| 22 |
+
.custom-button {
|
| 23 |
+
background-color: #b0ffb8 !important;
|
| 24 |
+
color: black !important;
|
| 25 |
+
}
|
| 26 |
+
.custom-button:hover {
|
| 27 |
+
background-color: #b0ffb8b3 !important;
|
| 28 |
+
}
|
| 29 |
+
.container {
|
| 30 |
+
max-width: 1200px !important;
|
| 31 |
+
margin: auto !important;
|
| 32 |
+
}
|
| 33 |
+
.main-container {
|
| 34 |
+
gap: 20px !important;
|
| 35 |
+
}
|
| 36 |
+
.metrics-container {
|
| 37 |
+
padding: 1.5rem !important;
|
| 38 |
+
border-radius: 0.75rem !important;
|
| 39 |
+
background-color: #1f2937 !important;
|
| 40 |
+
margin: 1rem 0 !important;
|
| 41 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
|
| 42 |
+
}
|
| 43 |
+
.metrics-title {
|
| 44 |
+
font-size: 1.25rem !important;
|
| 45 |
+
font-weight: 600 !important;
|
| 46 |
+
color: #1f2937 !important;
|
| 47 |
+
margin-bottom: 1rem !important;
|
| 48 |
+
}
|
| 49 |
+
.metrics-row {
|
| 50 |
+
display: flex !important;
|
| 51 |
+
gap: 1rem !important;
|
| 52 |
+
margin-top: 0.5rem !important;
|
| 53 |
+
}
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
def process_image(image: Image.Image, conf_thres: float, iou_thres: float) -> Tuple[Image.Image, str, plt.Figure, plt.Figure, str, str]:
|
| 57 |
+
if image is None:
|
| 58 |
+
return None, None, None, None, None, None
|
| 59 |
+
|
| 60 |
+
output_image, metrics = detector.detect(image, conf_thres, iou_thres)
|
| 61 |
+
|
| 62 |
+
# Create plots data
|
| 63 |
+
hist_data = pd.DataFrame({"Time (ms)": metrics["times"]})
|
| 64 |
+
indices = range(
|
| 65 |
+
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
line_data = pd.DataFrame(
|
| 69 |
+
{
|
| 70 |
+
"Inference": indices,
|
| 71 |
+
"Time (ms)": metrics["times"],
|
| 72 |
+
"Mean": [metrics["avg_time"]] * len(metrics["times"]),
|
| 73 |
+
}
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
hist_fig, line_fig = detector.create_plots(hist_data, line_data)
|
| 77 |
+
|
| 78 |
+
return (
|
| 79 |
+
output_image,
|
| 80 |
+
gr.update(
|
| 81 |
+
value=f"{metrics['total_inferences']}",
|
| 82 |
+
container=True,
|
| 83 |
+
),
|
| 84 |
+
hist_fig,
|
| 85 |
+
line_fig,
|
| 86 |
+
f"{metrics['avg_time']:.2f}",
|
| 87 |
+
f"{metrics['times'][-1]:.2f}",
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
def process_folder(files_paths: List[str], conf_thres: float, iou_thres: float):
|
| 91 |
+
if not files_paths:
|
| 92 |
+
return None, None, None, None, None, None
|
| 93 |
+
|
| 94 |
+
valid_extensions = [".jpg", ".jpeg", ".png"]
|
| 95 |
+
image_files = [
|
| 96 |
+
f for f in files_paths if os.path.splitext(f.lower())[1] in valid_extensions
|
| 97 |
+
]
|
| 98 |
+
|
| 99 |
+
if not image_files:
|
| 100 |
+
return None, None, None, None, None, None
|
| 101 |
+
|
| 102 |
+
for img_file in image_files:
|
| 103 |
+
image = Image.open(img_file)
|
| 104 |
+
|
| 105 |
+
yield process_image(image, conf_thres, iou_thres)
|
| 106 |
+
|
| 107 |
+
with gr.Blocks(
|
| 108 |
+
theme=gr.themes.Soft(
|
| 109 |
+
primary_hue="indigo", secondary_hue="gray", neutral_hue="gray"
|
| 110 |
+
),
|
| 111 |
+
css=css,
|
| 112 |
+
) as iface:
|
| 113 |
+
gr.HTML(
|
| 114 |
+
"""
|
| 115 |
+
<h1>Tech4Humans - Signature Detector</h1>
|
| 116 |
+
|
| 117 |
+
<div style="display: flex; align-items: center; gap: 10px;">
|
| 118 |
+
<a href="https://huggingface.co/tech4humans/yolov8s-signature-detector">
|
| 119 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md-dark.svg" alt="Model on HF">
|
| 120 |
+
</a>
|
| 121 |
+
<a href="https://huggingface.co/datasets/tech4humans/signature-detection">
|
| 122 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" alt="Dataset on HF">
|
| 123 |
+
</a>
|
| 124 |
+
<a href="https://github.com/tech4ai/t4ai-signature-detect-server">
|
| 125 |
+
<img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="GitHub">
|
| 126 |
+
</a>
|
| 127 |
+
<a href="https://huggingface.co/blog/samuellimabraz/signature-detection-model">
|
| 128 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-md-dark.svg" alt="Article">
|
| 129 |
+
</a>
|
| 130 |
+
</div>
|
| 131 |
+
"""
|
| 132 |
+
)
|
| 133 |
+
gr.Markdown(
|
| 134 |
+
"""
|
| 135 |
+
This system uses the [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector) model, specially fine-tuned for detecting handwritten signatures in document images.
|
| 136 |
+
|
| 137 |
+
With this detector, it is possible to identify signatures in digital documents with high accuracy in real time, making it ideal for applications involving validation, organization, and document processing.
|
| 138 |
+
|
| 139 |
+
---
|
| 140 |
+
"""
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
with gr.Row(equal_height=True, elem_classes="main-container"):
|
| 144 |
+
# Left column for controls and information
|
| 145 |
+
with gr.Column(scale=1):
|
| 146 |
+
with gr.Tab("Single Image"):
|
| 147 |
+
input_image = gr.Image(label="Upload your document", type="pil")
|
| 148 |
+
with gr.Row():
|
| 149 |
+
clear_single_btn = gr.ClearButton([input_image], value="Clear")
|
| 150 |
+
detect_single_btn = gr.Button(
|
| 151 |
+
"Detect", elem_classes="custom-button"
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
with gr.Tab("Image Folder"):
|
| 155 |
+
input_folder = gr.File(
|
| 156 |
+
label="Upload a folder with images",
|
| 157 |
+
file_count="directory",
|
| 158 |
+
type="filepath",
|
| 159 |
+
)
|
| 160 |
+
with gr.Row():
|
| 161 |
+
clear_folder_btn = gr.ClearButton([input_folder], value="Clear")
|
| 162 |
+
detect_folder_btn = gr.Button(
|
| 163 |
+
"Detect", elem_classes="custom-button"
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
with gr.Group():
|
| 167 |
+
confidence_threshold = gr.Slider(
|
| 168 |
+
minimum=0.0,
|
| 169 |
+
maximum=1.0,
|
| 170 |
+
value=0.25,
|
| 171 |
+
step=0.05,
|
| 172 |
+
label="Confidence Threshold",
|
| 173 |
+
info="Adjust the minimum confidence score required for detection.",
|
| 174 |
+
)
|
| 175 |
+
iou_threshold = gr.Slider(
|
| 176 |
+
minimum=0.0,
|
| 177 |
+
maximum=1.0,
|
| 178 |
+
value=0.5,
|
| 179 |
+
step=0.05,
|
| 180 |
+
label="IoU Threshold",
|
| 181 |
+
info="Adjust the Intersection over Union threshold for Non-Maximum Suppression (NMS).",
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
with gr.Column(scale=1):
|
| 185 |
+
output_image = gr.Image(label="Detection Results")
|
| 186 |
+
|
| 187 |
+
with gr.Accordion("Examples", open=True):
|
| 188 |
+
gr.Examples(
|
| 189 |
+
label="Image Examples",
|
| 190 |
+
examples=[
|
| 191 |
+
["assets/images/example_{i}.jpg".format(i=i)]
|
| 192 |
+
for i in range(
|
| 193 |
+
0, len(os.listdir(os.path.join("assets", "images")))
|
| 194 |
+
)
|
| 195 |
+
],
|
| 196 |
+
inputs=input_image,
|
| 197 |
+
outputs=output_image,
|
| 198 |
+
fn=detector.detect_example,
|
| 199 |
+
cache_examples=True,
|
| 200 |
+
cache_mode="lazy",
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
with gr.Row(elem_classes="metrics-container"):
|
| 204 |
+
with gr.Column(scale=1):
|
| 205 |
+
total_inferences = gr.Textbox(
|
| 206 |
+
label="Total Inferences", show_copy_button=True, container=True
|
| 207 |
+
)
|
| 208 |
+
hist_plot = gr.Plot(label="Time Distribution", container=True)
|
| 209 |
+
|
| 210 |
+
with gr.Column(scale=1):
|
| 211 |
+
line_plot = gr.Plot(label="Time History", container=True)
|
| 212 |
+
with gr.Row(elem_classes="metrics-row"):
|
| 213 |
+
avg_inference_time = gr.Textbox(
|
| 214 |
+
label="Average Inference Time (ms)",
|
| 215 |
+
show_copy_button=True,
|
| 216 |
+
container=True,
|
| 217 |
+
)
|
| 218 |
+
last_inference_time = gr.Textbox(
|
| 219 |
+
label="Last Inference Time (ms)",
|
| 220 |
+
show_copy_button=True,
|
| 221 |
+
container=True,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
with gr.Row(elem_classes="container"):
|
| 225 |
+
|
| 226 |
+
gr.Markdown(
|
| 227 |
+
"""
|
| 228 |
+
---
|
| 229 |
+
## About the Project
|
| 230 |
+
This project uses the YOLOv8s model fine-tuned for detecting handwritten signatures in document images. It was trained with data from the [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) and [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) datasets, undergoing preprocessing and data augmentation processes.
|
| 231 |
+
### Key Metrics:
|
| 232 |
+
- **Precision:** 94.74%
|
| 233 |
+
- **Recall:** 89.72%
|
| 234 |
+
- **mAP@50:** 94.50%
|
| 235 |
+
- **mAP@50-95:** 67.35%
|
| 236 |
+
- **Inference Time (CPU):** 171.56 ms
|
| 237 |
+
Complete details on the training process, hyperparameter tuning, model evaluation, dataset creation, and inference server can be found in the links below.
|
| 238 |
+
|
| 239 |
+
---
|
| 240 |
+
**Developed by [Tech4Humans](https://www.tech4h.com.br/)** | **Model:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Dataset:** [Tobacco800 + signatures-xc8up](https://huggingface.co/datasets/tech4humans/signature-detection)
|
| 241 |
+
"""
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
clear_single_btn.add([output_image])
|
| 245 |
+
clear_folder_btn.add([output_image])
|
| 246 |
+
|
| 247 |
+
detect_single_btn.click(
|
| 248 |
+
fn=process_image,
|
| 249 |
+
inputs=[input_image, confidence_threshold, iou_threshold],
|
| 250 |
+
outputs=[
|
| 251 |
+
output_image,
|
| 252 |
+
total_inferences,
|
| 253 |
+
hist_plot,
|
| 254 |
+
line_plot,
|
| 255 |
+
avg_inference_time,
|
| 256 |
+
last_inference_time,
|
| 257 |
+
],
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
detect_folder_btn.click(
|
| 261 |
+
fn=process_folder,
|
| 262 |
+
inputs=[input_folder, confidence_threshold, iou_threshold],
|
| 263 |
+
outputs=[
|
| 264 |
+
output_image,
|
| 265 |
+
total_inferences,
|
| 266 |
+
hist_plot,
|
| 267 |
+
line_plot,
|
| 268 |
+
avg_inference_time,
|
| 269 |
+
last_inference_time,
|
| 270 |
+
],
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
# Carregar métricas iniciais ao carregar a página
|
| 274 |
+
iface.load(
|
| 275 |
+
fn=detector.load_initial_metrics,
|
| 276 |
+
inputs=None,
|
| 277 |
+
outputs=[
|
| 278 |
+
output_image,
|
| 279 |
+
total_inferences,
|
| 280 |
+
hist_plot,
|
| 281 |
+
line_plot,
|
| 282 |
+
avg_inference_time,
|
| 283 |
+
last_inference_time,
|
| 284 |
+
],
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
return iface
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
if __name__ == "__main__":
|
| 291 |
+
if not os.path.exists(DATABASE_PATH):
|
| 292 |
+
os.makedirs(DATABASE_DIR, exist_ok=True)
|
| 293 |
+
|
| 294 |
+
iface = create_gradio_interface()
|
| 295 |
+
iface.launch(ssr_mode=False, share=True)
|