Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, EsmForProteinFolding
|
| 2 |
+
from transformers.models.esm.openfold_utils.protein import to_pdb, Protein as OFProtein
|
| 3 |
+
from transformers.models.esm.openfold_utils.feats import atom14_to_atom37
|
| 4 |
+
from proteins_viz import *
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
def convert_outputs_to_pdb(outputs):
|
| 8 |
+
final_atom_positions = atom14_to_atom37(outputs["positions"][-1], outputs)
|
| 9 |
+
outputs = {k: v.to("cpu").numpy() for k, v in outputs.items()}
|
| 10 |
+
final_atom_positions = final_atom_positions.cpu().numpy()
|
| 11 |
+
final_atom_mask = outputs["atom37_atom_exists"]
|
| 12 |
+
pdbs = []
|
| 13 |
+
for i in range(outputs["aatype"].shape[0]):
|
| 14 |
+
aa = outputs["aatype"][i]
|
| 15 |
+
pred_pos = final_atom_positions[i]
|
| 16 |
+
mask = final_atom_mask[i]
|
| 17 |
+
resid = outputs["residue_index"][i] + 1
|
| 18 |
+
pred = OFProtein(
|
| 19 |
+
aatype=aa,
|
| 20 |
+
atom_positions=pred_pos,
|
| 21 |
+
atom_mask=mask,
|
| 22 |
+
residue_index=resid,
|
| 23 |
+
b_factors=outputs["plddt"][i],
|
| 24 |
+
chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None,
|
| 25 |
+
)
|
| 26 |
+
pdbs.append(to_pdb(pred))
|
| 27 |
+
return pdbs
|
| 28 |
+
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
|
| 30 |
+
model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1", low_cpu_mem_usage=True)
|
| 31 |
+
|
| 32 |
+
model = model.cuda()
|
| 33 |
+
|
| 34 |
+
model.esm = model.esm.half()
|
| 35 |
+
|
| 36 |
+
import torch
|
| 37 |
+
|
| 38 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 39 |
+
|
| 40 |
+
model.trunk.set_chunk_size(64)
|
| 41 |
+
|
| 42 |
+
def fold_protein(test_protein):
|
| 43 |
+
tokenized_input = tokenizer([test_protein], return_tensors="pt", add_special_tokens=False)['input_ids']
|
| 44 |
+
tokenized_input = tokenized_input.cuda()
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
output = model(tokenized_input)
|
| 47 |
+
pdb = convert_outputs_to_pdb(output)
|
| 48 |
+
with open("output_structure.pdb", "w") as f:
|
| 49 |
+
f.write("".join(pdb))
|
| 50 |
+
image = take_care("output_structure.pdb")
|
| 51 |
+
return image
|
| 52 |
+
|
| 53 |
+
iface = gr.Interface(
|
| 54 |
+
title="everything-ai-proteinfold",
|
| 55 |
+
fn=fold_protein,
|
| 56 |
+
inputs="text",
|
| 57 |
+
outputs="image",
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
iface.launch(server_name="0.0.0.0", share=False)
|