Spaces:
Sleeping
Sleeping
Aryan Wadhawan
commited on
Commit
·
0cffe6d
1
Parent(s):
3e7b6ee
Implemented everything
Browse files
app.py
CHANGED
|
@@ -8,26 +8,17 @@ import io
|
|
| 8 |
import base64
|
| 9 |
from strsimpy.jaro_winkler import JaroWinkler
|
| 10 |
|
| 11 |
-
# base64 to audio ✅
|
| 12 |
-
# audio to transcription ✅
|
| 13 |
-
# audio to text ✅
|
| 14 |
-
# text to phoneme ✅
|
| 15 |
-
# accuracy = jarowinkler(transcription, phoneme) ✅
|
| 16 |
-
# band = getBandFromAccuracy(accuracy) ✅
|
| 17 |
-
# return accuracy, band ✅
|
| 18 |
|
| 19 |
-
|
| 20 |
-
def lark(audioAsB64):
|
| 21 |
-
# base64 to wav data conversion
|
| 22 |
wav_data = base64.b64decode(audioAsB64.encode("utf-8"))
|
| 23 |
-
|
| 24 |
-
# audio to transcription
|
| 25 |
processor = Wav2Vec2Processor.from_pretrained(
|
| 26 |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
| 27 |
)
|
| 28 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 29 |
|
| 30 |
-
waveform, sample_rate = librosa.load(
|
|
|
|
|
|
|
| 31 |
|
| 32 |
input_values = processor(
|
| 33 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
|
@@ -37,55 +28,68 @@ def lark(audioAsB64):
|
|
| 37 |
logits = model(input_values).logits
|
| 38 |
|
| 39 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 45 |
|
| 46 |
-
input_values =
|
| 47 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
| 48 |
).input_values
|
| 49 |
|
| 50 |
logits = model(input_values).logits
|
| 51 |
|
| 52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 53 |
-
|
| 54 |
|
| 55 |
-
|
| 56 |
-
graphemeToPhonemeTranscription =
|
|
|
|
| 57 |
|
| 58 |
-
# accuracy = jaroWinkler(transcription, phoneme)
|
| 59 |
|
|
|
|
| 60 |
jarowinkler = JaroWinkler()
|
| 61 |
-
similarity_score = jarowinkler.similarity(
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
return 7
|
| 73 |
-
elif similarity_score >= 0.65:
|
| 74 |
-
return 6
|
| 75 |
-
elif similarity_score >= 0.60:
|
| 76 |
-
return 5
|
| 77 |
-
elif similarity_score >= 0.46:
|
| 78 |
-
return 4
|
| 79 |
-
elif similarity_score >= 0.35:
|
| 80 |
-
return 3
|
| 81 |
-
elif similarity_score >= 0.1:
|
| 82 |
-
return 2
|
| 83 |
-
else:
|
| 84 |
-
return 1
|
| 85 |
-
|
| 86 |
-
IELTSband = getBandFromSimilarityScore(similarity_score)
|
| 87 |
-
|
| 88 |
-
return [similarity_score, IELTSband, speechToTextTranscripition]
|
| 89 |
|
| 90 |
|
| 91 |
iface = gr.Interface(fn=lark, inputs="text", outputs=["text", "text", "text"])
|
|
|
|
| 8 |
import base64
|
| 9 |
from strsimpy.jaro_winkler import JaroWinkler
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def speechToPhonemeWS(audioAsB64):
|
|
|
|
|
|
|
| 13 |
wav_data = base64.b64decode(audioAsB64.encode("utf-8"))
|
|
|
|
|
|
|
| 14 |
processor = Wav2Vec2Processor.from_pretrained(
|
| 15 |
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
|
| 16 |
)
|
| 17 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
|
| 18 |
|
| 19 |
+
waveform, sample_rate = librosa.load(
|
| 20 |
+
io.BytesIO(wav_data), sr=16000
|
| 21 |
+
) # Downsample 44.1kHz to 8kHz
|
| 22 |
|
| 23 |
input_values = processor(
|
| 24 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
|
|
|
| 28 |
logits = model(input_values).logits
|
| 29 |
|
| 30 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 31 |
+
transcription = processor.batch_decode(predicted_ids)
|
| 32 |
+
speechToPhonemeTranscription = transcription[0]
|
| 33 |
+
speechToPhonemeTranscription = speechToPhonemeTranscription.replace(" ", "")
|
| 34 |
+
return speechToPhonemeTranscription
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def speechToTextToPhonemeWS(audioAsB64):
|
| 38 |
+
wav_data = base64.b64decode(audioAsB64.encode("utf-8"))
|
| 39 |
|
| 40 |
+
waveform, sample_rate = librosa.load(
|
| 41 |
+
io.BytesIO(wav_data), sr=16000
|
| 42 |
+
) # Downsample 44.1kHz to 8kHz
|
| 43 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 44 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 45 |
|
| 46 |
+
input_values = processor(
|
| 47 |
waveform, sampling_rate=sample_rate, return_tensors="pt"
|
| 48 |
).input_values
|
| 49 |
|
| 50 |
logits = model(input_values).logits
|
| 51 |
|
| 52 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 53 |
+
speechToTextTranscription = processor.batch_decode(predicted_ids)
|
| 54 |
|
| 55 |
+
graphemeToPhonemeTranscription = phonemizer.phonemize(speechToTextTranscription[0])
|
| 56 |
+
graphemeToPhonemeTranscription = graphemeToPhonemeTranscription.replace(" ", "")
|
| 57 |
+
return [speechToTextTranscription[0], graphemeToPhonemeTranscription]
|
| 58 |
|
|
|
|
| 59 |
|
| 60 |
+
def similarity(S2P, G2P2T):
|
| 61 |
jarowinkler = JaroWinkler()
|
| 62 |
+
similarity_score = jarowinkler.similarity(S2P, G2P2T)
|
| 63 |
+
return similarity_score
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def similarityScoreToBand(similarity_score):
|
| 67 |
+
if similarity_score >= 0.91:
|
| 68 |
+
return 9
|
| 69 |
+
elif similarity_score >= 0.81:
|
| 70 |
+
return 8
|
| 71 |
+
elif similarity_score >= 0.73:
|
| 72 |
+
return 7
|
| 73 |
+
elif similarity_score >= 0.65:
|
| 74 |
+
return 6
|
| 75 |
+
elif similarity_score >= 0.60:
|
| 76 |
+
return 5
|
| 77 |
+
elif similarity_score >= 0.46:
|
| 78 |
+
return 4
|
| 79 |
+
elif similarity_score >= 0.35:
|
| 80 |
+
return 3
|
| 81 |
+
elif similarity_score >= 0.1:
|
| 82 |
+
return 2
|
| 83 |
+
else:
|
| 84 |
+
return 1
|
| 85 |
|
| 86 |
+
|
| 87 |
+
def lark(audioAsB64):
|
| 88 |
+
s2p = speechToPhonemeWS(audioAsB64)
|
| 89 |
+
[s2t, s2t2p] = speechToTextToPhonemeWS(audioAsB64)
|
| 90 |
+
ss = similarity(s2t2p, s2p)
|
| 91 |
+
band = similarityScoreToBand(ss)
|
| 92 |
+
return [ss, band, s2t]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
|
| 95 |
iface = gr.Interface(fn=lark, inputs="text", outputs=["text", "text", "text"])
|