Spaces:
Runtime error
Runtime error
init
Browse files- .gitignore +1 -0
- app.py +59 -3
- requirements.txt +8 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Aura/
|
app.py
CHANGED
|
@@ -1,7 +1,63 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
demo.launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
+
from gradio_imageslider import ImageSlider
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
from aura_sr import AuraSR
|
| 7 |
+
import torch
|
| 8 |
+
import time
|
| 9 |
+
import spaces
|
| 10 |
|
| 11 |
+
# Force CPU usage
|
| 12 |
+
torch.set_default_tensor_type(torch.FloatTensor)
|
| 13 |
+
|
| 14 |
+
# Override torch.load to always use CPU
|
| 15 |
+
original_load = torch.load
|
| 16 |
+
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
|
| 17 |
+
|
| 18 |
+
# Initialize the AuraSR model
|
| 19 |
+
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
| 20 |
+
|
| 21 |
+
# Restore original torch.load
|
| 22 |
+
torch.load = original_load
|
| 23 |
+
|
| 24 |
+
def process_image(input_image, scale_factor):
|
| 25 |
+
if input_image is None:
|
| 26 |
+
raise gr.Error("Please provide an image to upscale.")
|
| 27 |
+
|
| 28 |
+
start_time = time.time()
|
| 29 |
+
|
| 30 |
+
# Convert to PIL Image for resizing
|
| 31 |
+
pil_image = Image.fromarray(input_image)
|
| 32 |
+
|
| 33 |
+
if scale_factor == 2:
|
| 34 |
+
pil_image = pil_image.resize((int(pil_image.width * 0.5), int(pil_image.height * 0.5)), Image.LANCZOS)
|
| 35 |
+
elif scale_factor == 3:
|
| 36 |
+
pil_image = pil_image.resize((int(pil_image.width * 0.75), int(pil_image.height * 0.75)), Image.LANCZOS)
|
| 37 |
+
|
| 38 |
+
# Upscale the image using AuraSR
|
| 39 |
+
upscaled_image = process_image_on_gpu(pil_image)
|
| 40 |
+
|
| 41 |
+
# Convert result to numpy array if it's not already
|
| 42 |
+
result_array = np.array(upscaled_image)
|
| 43 |
+
|
| 44 |
+
end_time = time.time()
|
| 45 |
+
processing_time = end_time - start_time
|
| 46 |
+
|
| 47 |
+
return [input_image, result_array], f"Processing time: {processing_time:.2f} seconds"
|
| 48 |
+
|
| 49 |
+
@spaces.GPU
|
| 50 |
+
def process_image_on_gpu(pil_image):
|
| 51 |
+
return aura_sr.upscale_4x(pil_image)
|
| 52 |
+
|
| 53 |
+
with gr.Blocks() as demo:
|
| 54 |
+
gr.Markdown("# Image Upscaler")
|
| 55 |
+
with gr.Row():
|
| 56 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
| 57 |
+
scale_factor = gr.Radio([2, 3, 4], label="Scale Factor", value=4)
|
| 58 |
+
image_slider = ImageSlider(label="Before/After")
|
| 59 |
+
upscale_button = gr.Button("Upscale")
|
| 60 |
+
processing_time_text = gr.Textbox(label="Processing Time")
|
| 61 |
+
upscale_button.click(fn=process_image, inputs=[input_image, scale_factor], outputs=[image_slider, processing_time_text])
|
| 62 |
|
|
|
|
| 63 |
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aura-sr==0.0.4
|
| 2 |
+
gradio==4.41.0
|
| 3 |
+
spaces==0.29.3
|
| 4 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
| 5 |
+
torch==2.3.1+cu121
|
| 6 |
+
torchaudio
|
| 7 |
+
torchvision
|
| 8 |
+
gradio_imageslider==0.0.20
|